本部分的学习参考柯熙政老师的《无限光通信中的空间光——光纤耦合技术》及欧攀老师的《高等光学仿真(MATLAB版)》,为自学笔记,博客末尾附上了在学习过程中参考的博客内容。
在光纤的连接中,一个永久性的连接通常是指一个接头,而一个易拆卸的连接则称为连接器。每种连接方法都会受制于一些特定的条件,它们在连接点处都将导致不同数量的光功率损耗。这些损耗取决于一定参数。此外,多模光纤之间的连接和单模光纤之间的连接所产生的光功率损耗也有较大差异。
多模光纤连接的光功率损耗
在多模光纤与多模光纤的连接时,能够从一根多模光纤耦合进另一根多模光纤的功率受制于每根光纤中能传播的模式数量。例如如果一根可传播1000个模式的光纤连接到另一根仅能传播800个模式的光纤中,那么第一根光纤中最多有80%的光功率可耦合进第二根光纤中(如果假设所有的模式都受到同等的激励)。对于阶跃折射率多模光纤,其中的模式总数量可以通过式计算出来。对于渐变折射率光纤的模式总数量,令其纤芯半径为a,包层折射率为n2,k=2pi/lambda,则模式总数量可以使用下面的表达式来计算:
n(r)为光纤纤芯内距离光纤轴为r处的折射率,它与光纤的本地数值孔径NA(r)的关系
为:
其中,a是折射率剖面系数,NA(0)是光纤轴上的数值孔径,为:
所以M可以表示为:
通常,任何相互连接的两根光纤都将存在半径a、轴上数值孔径NA(0)和折射率剖面都有的差异。于是,从一根光纤到另一根光纤的光功率耦合比与两根光纤所共有的模式容量M_c成正比(假设在所有模式上的功率均匀分布),由此可得到多模光纤与多模光纤之间的耦合效率
如下,其中M_E是发射光纤的模式数量,光功率由发射光纤注入到另一光纤,M_C是被注入光纤的模式数量。
多模光纤之间的耦合损耗L_F可以用定义为
在实际中,光纤在连接时产生会产生机械对准误差,如轴向对准误差、径向对准误差、角度对准误差等。下面计算轴向对准误差对两根参数相同的阶跃折射率多模光纤连接时所产生的损耗。
两根光纤的纤芯半径均为a,轴向偏移为d(0≤d ≤2a),假定发射光纤中有均匀的模式功率分布,因而从发射光纤耦合进接收光纤的光功率比值就简单地正比于两根光纤公共的纤芯区域面积A_O。即耦合效率为:
通过几何运算可以得到面积A_O的解析式:
归一化轴向偏移量t=d/a(0≤t≤2),可以将耦合效率改写为:
此外,也可以通过积分得到:
还可以通过在重叠区域A_O进行双重积分得到:
从一根渐变折射率光纤耦合进另一根相同折射率光纤的光功率计算则更为复杂。