代码随想录训练营第六十四天打卡|84.柱状图中最大的矩形

本文介绍了三种方法计算给定柱状图中最大矩形面积:暴力法、双指针法以及单调栈实现。暴力法耗时较多,而双指针法和单调栈法利用递归性质提高效率,后者提供了简洁和详细注释版本。
摘要由CSDN通过智能技术生成

84.柱状图中最大的矩形

1.暴力法,时间开销只击败了5%,但毕竟是自己写的。朴素思想,以每一个柱子的高作为最终勾勒出的矩形的高求取面积,最后取最大值。求取面积的过程中,要找到以该根柱子作高,勾勒出矩形的宽。所以要找到左右第一个比该柱子矮的柱子的下标,这就是leftMinIndex,rightMinIndex两个数组的作用。如果左边没有柱子更矮了,那下标就为-1,右边没有柱子更矮了,下标就为n。

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        int n = heights.size();
        vector<int> leftMinIndex(n, -1);
        for (int i = 1; i < n; i++) {
            if (heights[i] == heights[i - 1]) {
                leftMinIndex[i] = leftMinIndex[i - 1];
                continue;
            }
            int j;
            for (j = i - 1; j >= 0; j--) {
                if (heights[j] < heights[i]) {
                    break;
                }
            }
            leftMinIndex[i] = j;
        }
        vector<int> rightMinIndex(n, n);
        for (int i = n - 2; i >= 0; i--) {
            if (heights[i] == heights[i + 1]) {
                rightMinIndex[i] = rightMinIndex[i + 1];
                continue;
            }
            int j;
            for (j = i + 1; j < n; j++) {
                if (heights[j] < heights[i]) {
                    break;
                }
            }
            rightMinIndex[i] = j;
        }
        int result = 0;
        for (int i = 0; i < n; i++) {
            int s = heights[i] * (rightMinIndex[i] - leftMinIndex[i] - 1);
            result = max(result, s);
        }
        return result;
    }
};

2.双指针法。双指针法乍一看和暴力法一模一样,其实区别在于leftMinIndex,rightMinIndex两个数组的建立过程中。暴力法中是一步一步移动的,而双指针法是利用之前已经得到过的信息。为什么可以这样,因为leftMinIndex,rightMinIndex两个数组的含义是左边(右边)第一个小于该柱子高度的柱子的下标。以leftMinIndex数组为例,1,3,4,5,7,6,5。遍历到6这个柱子时,左边7比它高,那我们就直接跳到第一个比7矮的柱子5这就是目标柱子,记录下标就行。遍历到最后一个柱子5时,左边柱子6比它高,那我们就直接跳到第一个比6矮的柱子5,5>=5,所以我们继续跳到4找到目标柱子返回下标。其中7就被我们跳过了,在实际情况中,被跳过的柱子数可能更多,提高了效率。

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        int n = heights.size();
        vector<int> leftMinIndex(n, -1);
        for (int i = 1; i < n; i++) {
            int j = i - 1;
            while (j >= 0 && heights[j] >= heights[i]) {
                j = leftMinIndex[j];
            }
            leftMinIndex[i] = j;
        }
        vector<int> rightMinIndex(n, n);
        for (int i = n - 2; i >= 0; i--) {
            int j = i + 1;
            while (j < n && heights[j] >= heights[i]) {
                j = rightMinIndex[j];
            }
            rightMinIndex[i] = j;
        }
        int result = 0;
        for (int i = 0; i < n; i++) {
            int s = heights[i] * (rightMinIndex[i] - leftMinIndex[i] - 1);
            result = max(result, s);
        }
        return result;
    }
};

3.单调栈,简洁写法。注意数组开头末尾分别加0是为了防止递减数组和递增数组的极端情况,详情见随想录。单调栈的核心在于while循环,虽然之前的元素出栈了,但由于保存的是下标,达到了一种“音容宛在”的效果。

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        stack<int> st;
        heights.insert(heights.begin(), 0);
        heights.push_back(0);
        int result = 0;
        for (int i = 0; i < heights.size(); i++) {
            while (!st.empty() && heights[i] < heights[st.top()]) {
                int h = heights[st.top()];
                st.pop();
                int w = i - st.top() - 1;
                result = max(result, h * w);
            }
            st.push(i);
        }
        return result;
    }
};

4.单调栈,详细注释版。

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        int result = 0;
        stack<int> st;
        heights.insert(heights.begin(), 0); // 数组头部加入元素0
        heights.push_back(0);               // 数组尾部加入元素0
        st.push(0);

        // 第一个元素已经入栈,从下标1开始
        for (int i = 1; i < heights.size(); i++) {
            if (heights[i] > heights[st.top()]) { // 情况一
                st.push(i);
            } else if (heights[i] == heights[st.top()]) { // 情况二
                st.pop(); // 这个可以加,可以不加,效果一样,思路不同
                st.push(i);
            } else { // 情况三
                while (!st.empty() &&
                       heights[i] < heights[st.top()]) { // 注意是while
                    int mid = st.top();
                    st.pop();
                    if (!st.empty()) {
                        int left = st.top();
                        int right = i;
                        int w = right - left - 1;
                        int h = heights[mid];
                        result = max(result, w * h);
                    }
                }
                st.push(i);
            }
        }
        return result;
    }
};

今日总结:结束?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值