84.柱状图中最大的矩形
1.暴力法,时间开销只击败了5%,但毕竟是自己写的。朴素思想,以每一个柱子的高作为最终勾勒出的矩形的高求取面积,最后取最大值。求取面积的过程中,要找到以该根柱子作高,勾勒出矩形的宽。所以要找到左右第一个比该柱子矮的柱子的下标,这就是leftMinIndex,rightMinIndex两个数组的作用。如果左边没有柱子更矮了,那下标就为-1,右边没有柱子更矮了,下标就为n。
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int n = heights.size();
vector<int> leftMinIndex(n, -1);
for (int i = 1; i < n; i++) {
if (heights[i] == heights[i - 1]) {
leftMinIndex[i] = leftMinIndex[i - 1];
continue;
}
int j;
for (j = i - 1; j >= 0; j--) {
if (heights[j] < heights[i]) {
break;
}
}
leftMinIndex[i] = j;
}
vector<int> rightMinIndex(n, n);
for (int i = n - 2; i >= 0; i--) {
if (heights[i] == heights[i + 1]) {
rightMinIndex[i] = rightMinIndex[i + 1];
continue;
}
int j;
for (j = i + 1; j < n; j++) {
if (heights[j] < heights[i]) {
break;
}
}
rightMinIndex[i] = j;
}
int result = 0;
for (int i = 0; i < n; i++) {
int s = heights[i] * (rightMinIndex[i] - leftMinIndex[i] - 1);
result = max(result, s);
}
return result;
}
};
2.双指针法。双指针法乍一看和暴力法一模一样,其实区别在于leftMinIndex,rightMinIndex两个数组的建立过程中。暴力法中是一步一步移动的,而双指针法是利用之前已经得到过的信息。为什么可以这样,因为leftMinIndex,rightMinIndex两个数组的含义是左边(右边)第一个小于该柱子高度的柱子的下标。以leftMinIndex数组为例,1,3,4,5,7,6,5。遍历到6这个柱子时,左边7比它高,那我们就直接跳到第一个比7矮的柱子5这就是目标柱子,记录下标就行。遍历到最后一个柱子5时,左边柱子6比它高,那我们就直接跳到第一个比6矮的柱子5,5>=5,所以我们继续跳到4找到目标柱子返回下标。其中7就被我们跳过了,在实际情况中,被跳过的柱子数可能更多,提高了效率。
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int n = heights.size();
vector<int> leftMinIndex(n, -1);
for (int i = 1; i < n; i++) {
int j = i - 1;
while (j >= 0 && heights[j] >= heights[i]) {
j = leftMinIndex[j];
}
leftMinIndex[i] = j;
}
vector<int> rightMinIndex(n, n);
for (int i = n - 2; i >= 0; i--) {
int j = i + 1;
while (j < n && heights[j] >= heights[i]) {
j = rightMinIndex[j];
}
rightMinIndex[i] = j;
}
int result = 0;
for (int i = 0; i < n; i++) {
int s = heights[i] * (rightMinIndex[i] - leftMinIndex[i] - 1);
result = max(result, s);
}
return result;
}
};
3.单调栈,简洁写法。注意数组开头末尾分别加0是为了防止递减数组和递增数组的极端情况,详情见随想录。单调栈的核心在于while循环,虽然之前的元素出栈了,但由于保存的是下标,达到了一种“音容宛在”的效果。
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
stack<int> st;
heights.insert(heights.begin(), 0);
heights.push_back(0);
int result = 0;
for (int i = 0; i < heights.size(); i++) {
while (!st.empty() && heights[i] < heights[st.top()]) {
int h = heights[st.top()];
st.pop();
int w = i - st.top() - 1;
result = max(result, h * w);
}
st.push(i);
}
return result;
}
};
4.单调栈,详细注释版。
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int result = 0;
stack<int> st;
heights.insert(heights.begin(), 0); // 数组头部加入元素0
heights.push_back(0); // 数组尾部加入元素0
st.push(0);
// 第一个元素已经入栈,从下标1开始
for (int i = 1; i < heights.size(); i++) {
if (heights[i] > heights[st.top()]) { // 情况一
st.push(i);
} else if (heights[i] == heights[st.top()]) { // 情况二
st.pop(); // 这个可以加,可以不加,效果一样,思路不同
st.push(i);
} else { // 情况三
while (!st.empty() &&
heights[i] < heights[st.top()]) { // 注意是while
int mid = st.top();
st.pop();
if (!st.empty()) {
int left = st.top();
int right = i;
int w = right - left - 1;
int h = heights[mid];
result = max(result, w * h);
}
}
st.push(i);
}
}
return result;
}
};
今日总结:结束?