用R语言来进行ababoost模型的构建

每天进步一点点,今天来分享怎么用R语言来进行ababoost模型的构建。

首先,什么是adaboost模型呢?它是一种迭代算法,属于boosting这个大类别的一员。它的核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。

Adaboost与Xgboost模型都属于集成学习模型,但比Xgboost更加“古老”。目前各大比赛基本上以Xgboost为主了。

接下来,让我们用R语言来构建一个adaboost模型。首先安装一些需要用到的R包。

 然后加载数据集。今天依然采用鸢尾花数据集进行示范。将训练集、测试集按8:2进行划分。

 来进行Adaboost模型构建

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值