分层分析:将资料按某个或某些需要控制的变量的不同分类进行分层,然后再估计暴露因子与某结局变量之间关系的一种资料分析方法。
分层分析的最重要的用途是评估和控制混杂因子所致的混杂偏倚。通过按混杂因子分层,可使每层内的两个比较组在所控制的混杂因子方面齐同,从而消除混杂作用;另一个重要用途是评估和描述效应修饰。另外,分层分析还可用于描述随访研究中的失访问题和竞争风险、研究两因子之间的生物学交互作用、以及生存分析和诱导期分析。
1.基本步骤概述
① 分层列表
将资料按混杂因子分层后,然后分别计算各层的效应估计值。
② 检验层别效应估计值
在绝大多数分层分析中,效应估计值在各层都有一些变化,而这些变化的意义却不尽相同。有些是随机变异的结果,有些是各种偏倚所致的,而有些却是极其重要的需要揭示的结果(如效用修饰或交互作用)。因此,在计算出各层的效应估计值后,应对其进行检验与分析,以明确层别效应估计值的变化有无统计学意义和重要的流行病学意义。明确这些问题对决定下一步用什么分析方法和如何报告分层分析的结果将起关键作用。因此,层别效应估计值的检验是至关重要的。然面,这一步骤并非总是可行的。有些变量可能因为种类太多而无法计算每层的效应估计值。如要研究家庭所致的潜在混杂作用,则因每个家庭的受试者太少而不能从每一个家庭计算出一个稳定的和可信的效应估计值。
3.层别效应的一致性假设与检验
绝大多数的分层分析方法是以各层效应大小一致( 即同质的)为基础的。即要求各层的效应估计值相等。在这种情况下,这些层别估计值就能够通过方