该题目的意思:如图所示的炸弹范围,只能摧毁中间的四个区域,边上的是无法摧毁的
例题2:K倍区间
给定一个长度为 N的数列,A1,A2,…AN,如果其中一段连续的子序列 Ai,Ai+1,…Aj之和是 K 的倍数,我们就称这个区间 [i,j] 是 K倍区间。
你能求出数列中总共有多少个 K倍区间吗?
输入格式
第一行包含两个整数 N和 K。
以下 N 行每行包含一个整数 Ai。
输出格式
输出一个整数,代表 K倍区间的数目。
数据范围
1≤N,K≤100000,
1≤Ai≤100000
输入样例:
5 2
1
2
3
4
5
输出样例:
6
解题思路:
分析:
1.求区间[l,r]的和是k的倍数的个数。求区间和,我们可以通过前缀和来求出。我们规定sum[i]表示第1个元素到第i个元素的和。那么sum[r] - sum[l-1]就是区间[l,r]的和。区间[l,r]的和是k的倍数即(sum[r] - sum[l-1])%k == 0 即sum[r]%k == sum[l-1]%k
2.首先要知道一个定理, r % k 的余数 与 l % k 的余数相等, 那么( r - l) % k == 0, 线性同余定理, 假设 r 与 l 跟 k 都同余 2, 那么 假设 n * k + 2 = r, m * k + 2 = l (n, m为正整数), 那么n * k + 2 - (m * k + 2) = (n - m)k = r - l. 又因为(n - m) * k是 k 的倍数, 所以 (r - l ) % k == 0. 即可以得出结论, 若r % k 和l % k 余数相同, 则 r - l % k 的余数为0
代码实现:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 100010;
int n, k;
LL s[N], cnt[N];//前缀和数组;记录模k的取值的数组
int main()
{
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i ++ )
{
scanf("%lld", &s[i]);
s[i] += s[i - 1];
}
LL res = 0;
//为什么赋值为1?
//因为我们的思路是找两个序列和a%k和b%k的余数相同的个数
//而我们的前缀和一般是不包含S0这个东西的,因为没有意义,但是这道题有意义
//样例里面前缀和序列%k之后是1 1 0 0 1,两两比较,我们只能找到四个
//为什么少了两个?因为我们不一定需要两个序列,单个序列取余=0也构成K倍区间
//也就是说s3 s4这两个区间是能单独成K倍区间的,而我们的思路是找两个序列比较
//此时,我们就要假设S0=0是有意义的,我们就可以有(s0,s3),(s0,s4)这两个组合
cnt[0] = 1;
for (int i = 1; i <= n; i ++ )
{
res += cnt[s[i] % k];
cnt[s[i] % k] ++ ;
}
printf("%lld\n", res);
return 0;
}