一D
Problem Statement
You are given a simple undirected graph with NN vertices numbered 11 to NN and MM edges numbered 11 to MM. Edge ii connects vertex u_iui and vertex v_ivi.
Find the number of connected components in this graph.
Notes
A simple undirected graph is a graph that is simple and has undirected edges.
A graph is simple if and only if it has no self-loop or multi-edge.
A subgraph of a graph is a graph formed from some of the vertices and edges of that graph.
A graph is connected if and only if one can travel between every pair of vertices via edges.
A connected component is a connected subgraph that is not part of any larger connected subgraph.
Constraints
- 1 \leq N \leq 1001≤N≤100
- 0 \leq M \leq \frac{N(N - 1)}{2}0≤M≤2N(N−1)
- 1 \leq u_i, v_i \leq N1≤ui,vi≤N
- The given graph is simple.
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
NN MM u_1u1 v_1v1 u_2u2 v_2v2 \vdots⋮ u_MuM v_MvM
Output
Print the answer.
Sample 1
Inputcopy | Outputcopy |
---|---|
5 3 1 2 1 3 4 5 | 2 |
The given graph contains the following two connected components:
- a subgraph formed from vertices 11, 22, 33, and edges 11, 22;
- a subgraph formed from vertices 44, 55, and edge 33.
Sample 2
Inputcopy | Outputcopy |
---|---|
5 0 | 5 |
Sample 3
Inputcopy | Outputcopy |
---|---|
4 6 1 2 1 3 1 4 2 3 2 4 3 4 | 1
|
这个题目的题意我也不知道怎么去解释,如果根据我的理解那就是找出有几课独立的树。
分析:
1,其实这题从本源上来看就是找关系,看有多少颗不同的树。
2,所以这题用并查集写,用压缩路径然后就可以找到一共有多少课树。
代码如下:
#include<stdio.h>
#include<math.h>
#include<string.h>
int a[200],b[200];
int f(int x)
{
if(a[x]==0)
return x;
return a[x]=f(a[x]);
}
int main()
{
int n,m,k=0;
scanf("%d%d",&n,&m);
if(m==0)
printf("%d",n);
else
{
for(int i=1;i<=m;i++)
{
int l,r;
scanf("%d%d",&l,&r);
if(f(l)!=f(r))
{
a[f(r)]=f(l);
}
}
for(int i=1;i<=n;i++)
b[a[i]]++;
printf("%d",b[0]);
}
}
二,A-B
题目描述
给出一串正整数数列以及一个正整数 CC,要求计算出所有满足 A - B = CA−B=C 的数对的个数(不同位置的数字一样的数对算不同的数对)。
输入格式
输入共两行。
第一行,两个正整数 N,CN,C。
第二行,NN 个正整数,作为要求处理的那串数。
输出格式
一行,表示该串正整数中包含的满足 A - B = CA−B=C 的数对的个数。
输入输出样例
输入 #1复制
4 1 1 1 2 3
输出 #1复制
3
说明/提示
对于 75\%75% 的数据,1 \leq N \leq 20001≤N≤2000。
对于 100\%100% 的数据,1 \leq N \leq 2 \times 10^51≤N≤2×105,0 \leq a_i <2^{30}0≤ai<230,1 \leq C < 2^{30}1≤C<230。
2017/4/29 新添数据两组
分析:
1,对于这个题目我最开始想的是暴力求解,但是看了看数据范围,,,,,,太大了。
2,所以转换了思路,反正只要它相减的值的绝对值得C就行,所以我采用了桶排序。
3,由A-B=C知,A-C=C,转换思路知,我们可以求原数组中有多少个满足条件的B,因此我们先 每个数A的个数先统计出来,然后A-C,最后统计原数组中满足条件的B的个数,即原数组中有多少个A-C。
代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5 + 10;
ll a[N], sum = 0;
map<int, int>mp;
int main() {
ll n, c;
cin >> n >> c;
for (int i = 0; i < n; i++) {
cin >> a[i];
mp[a[i]]++;
a[i] -= c;
}
for (int i = 0; i < n; i++)
sum += mp[a[i]];
cout << sum;
return 0;
}
总结:
1,其实很多算法都有一个最基本的模板,只要根据题目的意思解读题目,然后将条件带入模板就行。
2,很多题目一定要多方面思考,因为肯定有很多不同的路可以走通,我们寻找一条适合自己的、简单的路就行。
3,对于刷题,我的概念是将每一个题目弄明白,不求数量求质量,速度既然慢了下来,那题目就一定要能明白。