Python编写知乎爬虫实例

本文介绍了Python编写知乎爬虫的流程,包括网络爬虫的基本步骤、抓取策略(深度优先与广度优先)、技术栈(如requests、Bloom Filter、XPath等)、布隆过滤器在判重中的应用、数据库建表、以及如何应对反爬虫策略(如设置Headers和使用代理IP池)。最后提到了后续的分布式爬虫和日志记录。
摘要由CSDN通过智能技术生成

爬虫的基本流程

网络爬虫的基本工作流程如下:

  • 首先选取一部分精心挑选的种子URL
  • 将种子URL加入任务队列
  • 从待抓取URL队列中取出待抓取的URL,解析DNS,并且得到主机的ip,并将URL对应的网页下载下来,存储进已下载网页库中。此外,将这些URL放进已抓取URL队列。
  • 分析已抓取URL队列中的URL,分析其中的其他URL,并且将URL放入待抓取URL队列,从而进入下一个循环。
  • 解析下载下来的网页,将需要的数据解析出来。
  • 数据持久话,保存至数据库中。

爬虫的抓取策略

在爬虫系统中,待抓取URL队列是很重要的一部分。待抓取URL队列中的URL以什么样的顺序排列也是一个很重要的问题,因为这涉及到先抓取那个页面,后抓取哪个页面。而决定这些URL排列顺序的方法,叫做抓取策略。下面重点介绍几种常见的抓取策略:

  • 深度优先策略(DFS)
    深度优先策略是指爬虫从某个URL开始,一个链接一个链接的爬取下去,直到处理完了某个链接所在的所有线路,才切换到其它的线路。
    此时抓取顺序为:A -> B -> C -> D -> E -> F -> G -> H -> I -> J
  • 广度优先策略(BFS)
    宽度优先遍历策略的基本思路是,将新下载网页中发现的链接直接插入待抓取URL队列的末尾。也就是指网络爬虫会先抓取起始网页中链接的所有网页,然后再选择其中的一个链接网页,继续抓取在此网页中链接的所有网页。
    此时抓取顺序为:A -> B -> E -> G -> H -> I -> C -> F -> J -> D

了解了爬虫的工作流程和爬取策略后,就可以动手实现一个爬虫了!那么在python里怎么实现呢?

技术栈

  • requests 人性化的请求发送
  • Bloom Filter 布隆过滤器,用于判重
  • XPath 解析HTML内容
  • murmurhash
  • Anti crawler strategy 反爬虫策略
  • MySQL 用户数据存储

基本实现

下面是一个伪代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值