【问题描述】
证明在偶数n以内,歌德巴赫猜想是成立的。歌德巴赫猜想是:任何一个充分大的偶数都可以表示为两个素数之和。例如,4=2+2 6=3+3 8=3+5 50=3+47。
【输入形式】
输入偶数n
【输出形式】
对每一个偶数4, 6, 8, ..., n,依次输出一行。该行内容是<偶数>=<素数1>+<素数2>,要求素数1<=素数2.
【样例输入】
6
【样例输出】
def isprime(a):
for i in range(2,a//2+1):
if a%i==0:
return False
return True
n=eval(input())
for m in range(2,n+1):#两个数的和
for i in range(2,n+1):
if isprime(i):
if m-i>0 and isprime(m-i) and m%2==0:
print("%d=%d+%d"%(m,i,m-i))
break
4=2+2
6=3+3