【问题描述】
羽毛球队有男女运动员各n 人。给定2 个n×n 矩阵P 和Q。P[i][j]是男运动员i 和女运动员j配对组成混合双打的男运动员竞赛优势;Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势。由于技术配合和心理状态等各种因素影响,P[i][j]不一定等于Q[j][i]。男运动员i和女运动员j配对组成混合双打的男女双方竞赛优势为P[i][j]*Q[j][i]。设计一个算法,对于给定的男女运动员竞赛优势,计算男女运动员最佳配对法,使各组男女双方竞赛优势的总和达到最大。
【输入形式】
第一行是男队员(或女队员)的个数,第二、三、四行是男运动员i 和女运动员j配对组成混合双打的男运动员竞赛优势,第五、六、七行是女运动员i和男运动员j配合的女运动员竞赛优势
【输出形式】
竞赛优势的最大和
【样例输入】
3
10 2 3
2 3 4
3 4 5
2 2 2
3 5 3
4 5 1
【样例输出】
52
【样例输入】
5
4 1 8 9 2
1 5 6 9 4
4 7 8 6 7
8 4 6 7 1
1 4 9 3 2
3 2 8 1 4
2 1 6 1 5
4 2 9 7 4
1 5 3 9 4
4 8 5 3 1
【样例输出】
199
#include<iostream>
#include<limits.h>
using namespace std;
const int N=10010;
int n;
int A[N][N],B[N][N];
bool st[N];//表示女运动员是否找到配合的人
int tmp,ans=-INT_MAX,cnt;
void solve(int k)//k表示男运动员,同时是A矩阵的行
{
for(int j=1;j<=n;j++)//j表示女运动员,也是A矩阵的列
{
if(!st[j])
{
tmp+=A[k][j]*B[j][k];
st[j]=true;
if(k!=n)
{
solve(k+1);
}
else
{
if(tmp>ans)
ans=tmp;
}
tmp-=A[k][j]*B[j][k];
st[j]=false;
}
}
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>A[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>B[i][j];
solve(1);
cout<<ans<<endl;
return 0;
}