题目
Hanks博士是BT(Bio-Tech,生物技术)领域的知名专家。现在,他正在为一个细胞实验做准备工作:培养细胞样本。
Hanks博士手里现在有N种细胞,编号从1∼N,一个第i种细胞经过1秒钟可以分裂为Si个同种细胞(Si为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,进行培养。一段时间以后,再把培养皿中的所有细胞平均分入M个试管,形成M份样本,用于实验。Hanks博士的试管数M很大,普通的计算机的基本数据类型无法存储这样大的M值,但万幸的是,M总可以表示为m1的m2次方,即,其中m1,m2均为基本数据类型可以存储的正整数。
注意,整个实验过程中不允许分割单个细胞,比如某个时刻若培养皿中有4个细胞,Hanks博士可以把它们分入2个试管,每试管内2个,然后开始实验。但如果培养皿中有5个细胞,博士就无法将它们均分入2个试管。此时,博士就只能等待一段时间,让细胞们继续分裂,使得其个数可以均分,或是干脆改换另一种细胞培养。
为了能让实验尽早开始,Hanks博士在选定一种细胞开始培养后,总是在得到的细胞“刚好可以平均分入M个试管”时停止细胞培养并开始实验。现在博士希望知道,选择哪种细胞培养,可以使得实验的开始时间最早。
输入输出格式
输入格式
第一行,有一个正整数N,代表细胞种数。
第二行,有两个正整数m1,m2,以一个空格隔开,即表示试管的总数。
第三行有N个正整数,第i个数Si表示第i种细胞经过1秒钟可以分裂成同种细胞的个数。
输出格式
一个整数,表示从开始培养细胞到实验能够开始所经过的最少时间(单位为秒)。
如果无论Hanks博士选择哪种细胞都不能满足要求,则输出整数−1。
输入输出样例
输入样例
1
2 1
3
输出样例
-1
解析
这里补充一下算术基本定理的知识。
一个整数可以被表示成若干质数的乘积。这样就可以从一个新的角度来看待整数:正整数都是由质数为基底“构筑”的(1可以被视作零个质数的乘积)。如果把质数想象成元素(原子),把:原子结合”的动作解释成乘法,那么可以把质数合成出所有大于1的整数。
算术基本定理:设a>1,那么必有,其中Pj(1<=j<=s)是两两不相同的质数,aj(1<=j<=s)表示对应质数的幂次(出现的次数)。若在不记次序的意义下,该分解式是唯一的
算术基本定理其实就是平时所说的分解质因数的过程,朴素的分解质因数的代码如下:
int Decomposition(int x,int a[]){
int cnt=0;
for(int i=2;i<=x/i;i++){
for(;x%i==0;x/=i){
a[++cnt]=i;
}
}
if(x>1){
a[++cnt]=x;
}
return cnt;
}
下面给出一些算术基本定理的常用推论
推论1 d是a的约数的充要条件是,0<=ej<=aj,1<=j<=s,即d中每个质数的幂次都不超过a的。
推论2 若(这里允许某些aj或bj为0),那么,,以及,.
推论3 用除数函数表示的所有正约数的个数,则。这个推论更像是推论1的推论,对于每个质因子上的幂次,可以取0到中的任意整数,共ai+1个。由乘法原理可以直接得出。
比如,,可以直接写出a的质因子个数=
推论4 用除数和函数表示的所有正约数的和,则
这个推论也是推论1的推论,但是比起推论3用到了更高级的乘法原理。比如,可以知道的因子分别是1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120。
然后用等比数列求和公式展示那个算式
最后再把括号展开,发现
针对虽说关键数字大得吓人,但若是有推论1的铺垫,这道题的突破点是十分明显的:如果,那么。接下来只需要解决题意中的的求解。
由推论1可以得到,当中的每个质因子的幂次都比小时,成立。中的质因子是否出现由决定,而质因子出现了几次主要由决定。若,那么xi应该使得对于所有1<=j<=s的j,满足.
所以从中的每个质因子出发:如果这个不能整除,则说明不包含这个质因子,进而说明找不到题设要求的;如果这个能整除,那么只要求出对应的,就能算出第j个质因子,要求不小于,再对所有这样的要求取最大值,就得到了,最后对所以合法的取最小值就是答案。
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 10010
int m1,m2,n,pri[maxn],tot[maxn],a[maxn];
int Decomposition(int x){
int cnt=0,Cnt=0;
for(int i=2;i<=x/i;i++){
for(;x%i==0;x/=i){
a[++cnt]=i;
}
}
if(x>1){
a[++cnt]=x;
}
for(int i=1;i<=cnt;i++,tot[Cnt]++){//tot记录对应质数的次数
if(a[i]!=a[i-1]){//pri记录m1中出现的次数
pri[++Cnt]=a[i];
}
}
return Cnt;
}
int main(){
scanf("%d%d%d",&n,&m1,&m2);
int cnt=Decomposition(m1),ans=2e9,s;
while(n--){
scanf("%d",&s);
int x=0;
for(int i=1;i<=cnt;i++){
int p=pri[i];
if(s%p!=0){
x=-1;
break;
}
else{
int e=0;
for(;s%p==0;s/=p){
e++;
}
x=max(x,1+(m2*tot[i]-1)/e);
}
}
if(x>=0){
ans=min(x,ans);
}
}
if(ans>=2e9){
puts("-1");
}
else{
printf("%d",ans);
}
return 0;
}