题目
难度等级:6(1-8难到易)
Some numbers have funny properties. For example:
89 --> 8¹ + 9² = 89 * 1
695 --> 6² + 9³ + 5⁴= 1390 = 695 * 2
46288 --> 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51
Given a positive integer n written as abcd... (a, b, c, d... being digits) and a positive integer p
-
we want to find a positive integer k, if it exists, such that the sum of the digits of n taken to the successive powers of p is equal to k * n.
In other words:
Is there an integer k such as : (a ^ p + b ^ (p+1) + c ^(p+2) + d ^ (p+3) + ...) = n * k
If it is the case we will return k, if not return -1.
Note: n and p will always be given as strictly positive integers.
digPow(89, 1) should return 1 since 8¹ + 9² = 89 = 89 * 1 digPow(92, 1) should return -1 since there is no k such as 9¹ + 2² equals 92 * k digPow(695, 2) should return 2 since 6² + 9³ + 5⁴= 1390 = 695 * 2 digPow(46288, 3) should return 51 since 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51
汉译
有些数字具有有趣的特性。例如:
89 --> 8¹ + 9² = 89 * 1
695 --> 6² + 9³ + 5⁴= 1390 = 695 * 2
46288 --> 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51
给定一个正整数 n,写成 abcd...(a, b, c, d... 是数字)和一个正整数 p
-
我们想要找到一个正整数 k,如果它存在的话,使得 n 的数字之和对 p 的连续幂等于 k n。
换句话说:
是否存在整数 k 例如: (a ^ p + b ^ (p+1) + c ^(p+2) + d ^ (p+3) + ...) = n * k
如果是这种情况,我们将返回 k,如果不是,则返回 -1。
注意:n 和 p 将始终作为严格的正整数给出。
digPow(89, 1) should return 1 since 8¹ + 9² = 89 = 89 * 1 digPow(92, 1) should return -1 since there is no k such as 9¹ + 2² equals 92 * k digPow(695, 2) should return 2 since 6² + 9³ + 5⁴= 1390 = 695 * 2 digPow(46288, 3) should return 51 since 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688
代码区
class DigPow
{
public:
static int digPow(int n, int p);
};
int digPow(int n, int p) {
// your code
}
解答
CPP(c++解法)
#include <cmath>
using namespace std;
class DigPow
{
public:
static int digPow(int n, int p){
long long sum=0;
for(char digit : to_string(n)){
sum+=pow(digit-'0',p++);
}
return (sum/n)*n==sum ? sum/n : -1;
}
};
#include <string>
#include <cmath>
class DigPow
{
public:
static int digPow(int n, int p);
};
int DigPow::digPow(int n, int p)
{
long long s = 0;
std::string nstr = std::to_string(n);
for (unsigned int i = 0; i < nstr.length(); i++)
s += static_cast<long long>(std::pow(static_cast<int>(nstr[i] - '0'), p + i));
if (s % n == 0)
return s / n;
else
return -1;
}
#include <string>
#include <cmath>
using namespace std;
class DigPow
{
public:
static int digPow(int n, int p)
{
string num = to_string(n);
int a{0};
for(char ch : num ) {
int i = ch - '0';
a += pow(i, p);
++p;
}
return (( a%n == 0) ? a/n : -1);
}
};
C(c语言解法)
int digPow(int n, int p) {
int numDigits = floor(log10(n))+1;
int result = 0;
int num = n;
for (int i = p + numDigits - 1; i >= p; i--) {
result += pow(num%10, i);
num/=10;
}
if (result % n == 0) {
return result / n;
}
return -1;
}
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> int digPow(int n, int p) { long long sum = 0; char* s = malloc(20); sprintf(s, "%d", n); for(int i = 0; i < strlen(s); i++) { sum += pow(s[i] - '0', p + i); } return (sum / n) * n == sum ? sum / n : -1; }
int digPow(int n, int p) {
p += (int)log10(n);
unsigned int val = n;
unsigned int sum = 0;
while(val > 0) {
sum += pow(val % 10, p--);
val /= 10;
}
return sum % n == 0 ? sum / n : -1;
}
D(我的解法)
#include<iostream>
#include <string>
#include<math.h>
using namespace std;
int digPow(int n, int p)
{
string intStr = to_string(n);
long sum = 0;
for (int i = 0; i < intStr.length(); ++i, ++p) {
sum += pow(intStr[i] - '0', p);
}
return (sum % n == 0) ? sum / n : -1;
}
int main()
{
int n , p;
cin >> n; cin >> p;
cout<<digPow(n, p);
system("pause");
return 0;
}
PS(知识补充)
pow()
使用说明:实现次方运算^
头文件:#include<math.h>
使用方法:pow(a,b)
C++中int和string的互相转换
一、用sstream类
1. int -> string
#include<iostream> #include<sstream> //需要引用的头文件 using namespace std; int main(){ int x = 1234; //需要转换的数字 stringstream sstr; string str; sstr<<x; str = sstr.str(); //转换后的字符串 cout << str <<endl; return 0; }
2. string -> int
#include<iostream> #include<sstream> //需要引用的头文件 using namespace std; int main(){ int x; string str = "4321"; //需要转换的字符串 stringstream sstr(str); sstr >> x; //转换后的数字 cout << x << endl; }
缺点:处理大量数据时候速度慢;stringstream不会主动释放内存。
二、用sprintf、sscanf函数
1. int -> string
#include<iostream> using namespace std; int main(){ int x = 1234; //需要转换的数字 string str; char ch[5]; //需要定义的字符串数组:容量等于数字长度+1即可 sprintf(ch,"%d", x); str = ch; //转换后的字符串 cout << str << endl; }
2. string -> int、float
#include<iostream> using namespace std; int main(){ char ch[10] = "12.34"; //需要转换的字符串 int x; //转换后的int型 float f; //转换后的float型 sscanf(ch, "%d", &x); //转换到int过程 sscanf(ch, "%f", &f); //转换到float过程 cout << x << endl; cout << f << endl; }
三、C标准库atoi, atof, atol, atoll(C++11标准) 函数
可以将字符串转换成int,double, long, long long 型
1. int -> string
itoa函数: 定义: char *itoa(int value, char *string, int radix); 参数: ① value:需要转换的int型 ② string:转换后的字符串,为字符串数组 ③ radix:进制,范围2-36
(没run起来,一直报错,随后再补)
2. string -> int、double、long、long long
atoi函数: 定义: int atoi(const char *nptr); double atof(const char *nptr); long atol(const char *nptr); long long atoll(const char *nptr); 参数: ① nptr:字符串数组首地址
#include<iostream> #include<stdlib.h> //需要引用的头文件 using namespace std; int main(){ int x; char ch[] = "4321"; //需要转换的字符串 x = atoi(ch); //转换后的int数字 cout << x << endl; }
C++中int与char相互转换
一、ASCII表
了解int与char相互转换之前,先让我们看一下ASCII表。
其中数字字符对应的位置为:48(0) - 57(9)。
二、char转int
char转int之前,先将运算式中的每个字符都转换成ASCII码值,再进行计算。 以下代码为例,其中i3的结果符合我们的预期要求。
char c = '0'; int i1 = c; // 48 int i2 = c - 0; // 48 int i3 = c - '0'; // 0 int i4 = c + '0'; // 96
三、int转char
int转char之前,先将运算式中的每个字符都转换成ASCII码值,再进行计算。 计算出数值后,再据此转换为字符(数值为该字符对应的ASCII码值)。 以下代码为例,其中c4的结果符合我们的预期要求。
int i = 5; char c1 = i; // 越界 char c2 = i - 0; // 越界 char c3 = i - '0'; // 越界 char c4 = i + '0'; // 5