matlab学习笔记——微积分求解

6.1求解函数的导数

6.1.1函数的导数

6.1.2例3-隐函数的求导

6.2极限问题

6.2.1单变量函数

6.2.2多变量函数

6.3求解积分问题

6.3.1不定积分

6.3.2定积分与无穷积分

6.3.3多重积分

%6.1求解函数的导数
%6.1.1函数的导数
diff(s,'v');
diff(s,n)
diff(s,'v',n)%n代表阶

%例1
syms x
y = sqrt(1-2*exp(x));
diff(y,'x')

%例2
syms x
y = x*sin(x);
y1 = diff(y)
y2 = diff(y1)
y3 = diff(y2)

%6.1.2例3-隐函数的求导
syms a x y z
f =x^2-y^2+2*z^2-a^2;
zx = diff(f,'x')
zy = diff(f,'y')

%6.2极限问题
%6.2.1单变量函数
limit(f,x,a);%x趋近于a时的极限值
limit(f)%默认趋近于0
limit(f,x,a,'left')%从左侧趋近
limit(f,x,a,'right')%从右侧趋近

%例1
syms x a b;
f = x*(1-2*a/x)^x*sin(3*b/x);
limit(f,x,inf)

%6.2.2多变量函数
l1 = limit(limit(f,x,x0),y,y0)
l2 = limit(limit(f,y,y0),x,x0)

%例1
clear
syms x y ;
f=exp(1/(x^2-y^2));
limit(limit(f,x,1/sqrt(y)),y,inf)

%6.3求解积分问题
%6.3.1不定积分
F = int(fun,x)%F是积分原函数,fun是被积函数

%例1
clear
syms x;
f = (1+x^2)^3
F = int(f)

%6.3.2定积分与无穷积分
I = int(f,x,a,b)%(a,b)为积分区间

%例子
clear
syms x;
f = abs(1+x)
F = int(f,2,5)

%6.3.3多重积分
%类比多变量求导
syms t x c1 c2;
y = exp(-t*x);
F = int(int(y,x)+c1,t)+c2

%6.4级数展开与求和
taylor(f,x,k,a)                         %按照x = a 进行泰勒幂级数展开,f为符号表达式,x是自变量,k为展开的项数
symsum(fk,k,k0,kn)                      %fk中只含有一个变量,起止项可以为inf,k是变量,kn是最终值

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值