-因为网络的波动原因,B线程从后追上A线程, 率先更新了缓存的值,200; 此时缓存数据为200,非常正确。
-但紧接着,A线程缓过神来了,把缓存的值更新为了1000;
-这时候,读操作来了,先读缓存,拿出来的值是1000,实际上应该是200,无疑这是读到了错误数据。
特别是写操作远大于读操作的项目场景, 这个还是很让人头疼的。
******************************************懒人手动分割线******************************************
******************************************懒人手动分割线******************************************
******************************************懒人手动分割线******************************************
先更新缓存,再更新****数据库
存在问题1:
-假设原来的值是500,先需要更新缓存的值1000,成功了;缓存的值为1000;
-接着就会去更新数据库, 因为未知原因(网络等),导致更新失败; 数据库的值为 500不变。
-那么读操作来了,先去缓存里面读数据,拿到的是1000,可是数据库是500 。无疑这是读到了错误数据。
因为数据库更新不成功,缓存的数据应该也是不可以成功的。
存在问题2:
高并发场景时,
-假设原来的值是500,线程A更新缓存的值变为1000,成功了;缓存的值为1000,,接着就准备去更新数据库;
-这时候,线程B来了,更新更新缓存的值变成200,接着就会去更新数据库;
-因为网络的波动原因,B线程从后追上A线程, 率先更新了数据库,200; 此时数据库数据为200。
-但紧接着,A线程缓过神来了,把数据库的值的值更新为了1000;
-此时此刻,缓存数据是200,数据库数据是1000; 读操作来了,无疑这是读到了错误数据。
特别是写操作远大于读操作的项目场景, 这个还是很让人头疼的。
******************************************懒人手动分割线******************************************
******************************************懒人手动分割线******************************************
******************************************懒人手动分割线******************************************
看完上面2种情况,明显我们都知道,在高并发切写远多于读的时候,这两种情况都是很不可取的;
所以,就衍生出一个策略,在写操作的时候,不要去更新缓存,而且选择直接删除缓存。
更新缓存的操作,放在读操作进行;
读操作为:如果缓存有,读出;无,读出数据库的值,更新缓存。
ps:当然读多写少的场景,上面2种方式也都还行。
那就是 先删除缓存,再更新数据库 还是 先更新数据库,再删除缓存 这两个之间的抉择了。
先删除缓存,再更新****数据库
存在问题1:
-假设原来缓存的值是500,数据库也是500;
-先删除缓存, 因为未知原因(网络等),导致更新数据库时失败;
-这时候,读操作来了,无影响,因为缓存没有,直接读数据库,正常;
-这时候,写操作又来,无影响,缓存已经没有,继续更新数据库,正常;
这么一看,好像还蛮不错!
然而并不然!因为删缓存的策略代替更新缓存,上面讲到了是把缓存写入操作给了读操作进行。
继续看高并发的场景。
存在问题2:
高并发场景时,
-假设原来缓存的值是500,数据库也是500;
-线程A删掉了缓存,正准备去更新数据库,把值变成1000;
-因为网络的波动原因线程A懵了,呆滞了;
-这时候,线程B来了,线程B进行的读操作,查询,一看缓存没数据了(被线程A删掉了),接着就去读数据库,值为500;
-线程B读完数据库的值500后,紧接着把数据写入缓存! 此时缓存的数据是500;
-此时线程A缓过神来,更新数据库值为1000。
-此后,缓存的数据是500,数据库数据是1000, 无疑,又是存在错误数据!
特别是读操作远大于写操作的项目场景, 这个好像又开始很让人头疼了。
******************************************懒人手动分割线******************************************
******************************************懒人手动分割线******************************************
******************************************懒人手动分割线******************************************
先更新数据库**,再删除****缓存**
存在问题1:
-假设原来缓存的值是500,数据库也是500;更新数据库值变成1000,成功了;
-删除缓存失败,还是500;
-这时候,读操作来了,读出缓存的数据500,无疑这是读到了错误数据;
存在问题2:
高并发场景时,
-假设原来缓存的值是500,数据库也是500;
-线程A来了,更新数据库的值为1000,删除了缓存;
-这时候,线程B也来了,线程B是一个读操作,发现缓存没有,读取了数据库的值1000,然后准备写入缓存;
-因为网络的波动原因线程B懵了,呆滞了;
-这时候线程C来了,线程C更新数据库值为2000,然后很利索删除缓存(这时候其实本来就没缓存);
-然后线程B缓过神来了,很利索把值1000写入了缓存。
-这时候,其他读操作来了,读出换成的数据1000,而数据库实际是2000,无疑这是读到了错误数据;
******************************************懒人手动分割线******************************************
******************************************懒人手动分割线******************************************
******************************************懒人手动分割线******************************************
???
嗯?什么?
一轮下来把四种姿势都看完了,发现都不好???
那咱们总得选一种用缓存啊?
如果项目场景是读多写少 :
而且是并发不考虑的场景,其实更新缓存的方式也是能用一用,不过还是建议用下面的删除缓存的方式。
如果项目场景是写多读少 :
其实这时候,使用删除缓存的策略显然好很多。
先删除缓存,再更新****数据库 分析:
那么选择 如果 先删除缓存,再更新****数据库 ,上面提到了,就是怕高并发的场景,导致数据库的数据是正常的,而缓存的数据是不对的。
既然是因为这个缓存数据是脏的,那么针对这个问题,于是乎有了 延时双删除策略:
先删除 缓存 ,再更新数据库, 延时后再删除缓存
从字面上其实已经能知道,就是补一刀把后续的脏缓存数据删掉,这么具体的延时时间是多少,就得根据具体项目业务时间去衡量了。
先更新数据库**,再删除****缓存 分析:**
那么选择 如果 先更新数据库 ,再删除缓存 ,其实这个方式是 一个国外比较推荐的使用缓存方式 : Cache-Aside pattern
上面提到了,这种方式在高并发的场景也是存在问题的。
但是为什么外国人这么推荐这种方式呢?
回顾这种方式,在高并发的情形,出现问题的原因是 读操作的后面写入数据到缓存的环节上。
但是读操作实际上肯定比写操作快得多,所以发生上边描述的出现脏数据的场景的概率也是比较小。
最后
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长,自己不成体系的自学效果低效漫长且无助。
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,不论你是刚入门Android开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
)]
[外链图片转存中…(img-MXMWWFtU-1714944521264)]
[外链图片转存中…(img-F8UPOKzU-1714944521264)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,不论你是刚入门Android开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!