深度学习-语义分割篇-霹雳吧啦Wz
文章平均质量分 89
三七2024
这个作者很懒,什么都没留下…
展开
-
搭建U-Net并基于DRIVE数据集训练
这是学习 B站博主霹雳吧啦Wz 的 深度学习-语义分割篇-使用PyTorch搭建U-Net网络并基于DRIVE数据集训练视频所做的笔记。原创 2024-05-24 14:40:41 · 1274 阅读 · 6 评论 -
帮助我自己理解U-Net网络结构讲解的小知识点
UNet 网路结构左半部分是下采样:图片尺寸变小,图片变得模糊;UNet 网路结构右半部分是上采样:图片尺寸变大,图片变得清晰。常见的方法包括平均池化、最大池化和卷积池化等。常见的方法包括最近邻插值、双线性插值和三次插值等。上采样和下采样的目的是为了适应不同的任务需求,例如:在特征提取、图像压缩和迁移学习中,需要将高分辨率图像下采样到低分辨率图像。(UNet 左半部分就是在进行特征提取、图像压缩)在目标检测、图像分割和超分辨率重建等任务中,需要将低分辨率图像上采样到高分辨率图像。原创 2024-05-22 16:13:15 · 418 阅读 · 0 评论 -
U-Net 网络结构讲解
※ 这是学习 B站博主霹雳吧啦Wz 的 深度学习-语义分割篇-UNet网络结构讲解视频 所做的笔记。主要讲了论文中网络结构以及现在的主流更改还有论文中的两张图。原创 2024-05-22 16:11:59 · 2088 阅读 · 0 评论