代码随想录算法训练营第四十五天| 70 爬楼梯 322 零钱兑换 279 完全平方数

本题可以转化为完全背包问题进行解答。

class Solution {
public:
    int climbStairs(int n) {
        vector<int>f(n + 2);
        f[0] = 1;
        int m = 2;
        for(int i = 1;i <= n;i++){
            for(int j = 1;j <= m;j++){
                if(i >= j)f[i] += f[i - j];
            }
        }
        return f[n];
    }
};

时间复杂度O(n×m)

空间复杂度O(n)

322 零钱兑换

如果求排列数就是外层for遍历背包,内层for循环遍历物品。
如果求组合数就是外层for循环遍历物品,内层for循环遍历背包。本题为求最小数,钱币有无顺序并不影响,所以上述二种均可。
class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int>f(amount + 2,amount + 1);//凑够总金额为i时最少硬币数量
        f[0] = 0;
        for(int i = 1;i <= amount;i++){
            for(int j = 0;j < coins.size();j++){
                if(i >= coins[j])f[i] = min(f[i],f[i - coins[j]] + 1);
            }
        }
        return f[amount] == amount + 1 ? -1 : f[amount];
    }
};

时间复杂度O(n×m)

空间复杂度O(n)

279 完全平方数

如果求排列数就是外层for遍历背包,内层for循环遍历物品。
如果求组合数就是外层for循环遍历物品,内层for循环遍历背包。本题为求最小数,钱币有无顺序并不影响,所以上述二种均可。
class Solution {
public:
    int numSquares(int n) {
        vector<int>f(n + 2,n + 2);//当整数大小为i时和为i的完全平方数的最少数量
        f[0] = 0;
        for(int i = 1;i <= n;i++){
            for(int j = 1;j <= i / j;j++){
                f[i] = min(f[i],f[i - j * j] + 1);
            }
        }
        return f[n];
    }
};

时间复杂度O(n×m)

空间复杂度O(n)

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值