本题可以转化为完全背包问题进行解答。
class Solution {
public:
int climbStairs(int n) {
vector<int>f(n + 2);
f[0] = 1;
int m = 2;
for(int i = 1;i <= n;i++){
for(int j = 1;j <= m;j++){
if(i >= j)f[i] += f[i - j];
}
}
return f[n];
}
};
时间复杂度O(n×m)
空间复杂度O(n)
322 零钱兑换
如果求排列数就是外层for遍历背包,内层for循环遍历物品。如果求组合数就是外层for循环遍历物品,内层for循环遍历背包。本题为求最小数,钱币有无顺序并不影响,所以上述二种均可。
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int>f(amount + 2,amount + 1);//凑够总金额为i时最少硬币数量
f[0] = 0;
for(int i = 1;i <= amount;i++){
for(int j = 0;j < coins.size();j++){
if(i >= coins[j])f[i] = min(f[i],f[i - coins[j]] + 1);
}
}
return f[amount] == amount + 1 ? -1 : f[amount];
}
};
时间复杂度O(n×m)
空间复杂度O(n)
279 完全平方数
如果求排列数就是外层for遍历背包,内层for循环遍历物品。如果求组合数就是外层for循环遍历物品,内层for循环遍历背包。本题为求最小数,钱币有无顺序并不影响,所以上述二种均可。
class Solution {
public:
int numSquares(int n) {
vector<int>f(n + 2,n + 2);//当整数大小为i时和为i的完全平方数的最少数量
f[0] = 0;
for(int i = 1;i <= n;i++){
for(int j = 1;j <= i / j;j++){
f[i] = min(f[i],f[i - j * j] + 1);
}
}
return f[n];
}
};
时间复杂度O(n×m)
空间复杂度O(n)