文章目录
一、加入课程QQ群
(一)班级QQ群
- 2023软件2班(3+2)619798014
(二)入群要求
- 修改群名片,使用实名
二、加入学习通班级群
(一)学习通班级群
- 2023软件2班(3+2)邀请码:48362003
(二)手势签到
- 2023软件2班(3+2)签到结果(全勤)
三、使用思维导图工具
(一) 安装XMind
- 安装完成之后,桌面会有快捷方式图标
(二)创建思维导图做自我介绍
- 自我介绍(聂理佳-2024)
(三操作要点小结)
- 选择模板、选择风格(萝卜青菜各有所爱)
- 添加节点
- 添加子节点:按
Tab
键 - 添加兄弟节点:按
Enter
键
- 添加子节点:按
- 删除节点:选中节点,按
Del
键 - 给节点添加图标(任务优先级)
- 生成概要(summary)
- 保存思维导图文件
- 导出成png图片
四、使用大语言模型
-
有很多大语言模型、比如ChatGPT、通义千问、文心一言、豆包…
-
我们使用通义千问(https://tongyi.aliyun.com/qianwen/)
-
注册登录
-
将思维导图的自我介绍写成一篇具有某种风格的自我介绍文章
- -
单击【发送】按钮,生成满足用户要求的文字
五、创建CSDN博客
(一)选择MarkDown编辑器
- 在内容管理的博客设置里,选择默认编辑器:MarkDown编辑器
(二)MarkDown基本语法
1、自动生成文字目录
- 在文章最前面添加注解:
@[toc]
2、各个级别标题
#
:一级标题##
:二级标题###
:三级标题- 注意:
#
打完之后必须空一格
3、让内容变红
- 用一对反单引号:``
4、制作表格
- 23软件2班(3+2)
学号 姓名 性别 年龄 班级 手机 20230301 李长海 男 19 23软件2班 18977995587 20230402 张晓刚 男 18 23软件2班 13978786789 20230403 童安格 男 19 23软件2班 15856564679
5、数学公式
- 勾股定理: a 2 + b / 2 = c 2 a^2+b/2=c^2 a2+b/2=c2
- 一元二次方程:
a
x
2
+
b
x
+
c
=
0
(
a
≠
0
)
ax^2+bx+c=0\quad(a\ne0)
ax2+bx+c=0(a=0)
\ne:not equal
- 求根公式
- x 1 = − b + b 2 − 4 a c 2 a x_1=\displaystyle\frac{-b+\sqrt{b^2-4ac}}{2a} x1=2a−b+b2−4ac
- x 2 = − b − b 2 − 4 a c 2 a x_2=\displaystyle\frac{-b-\sqrt{b^2-4ac}}{2a} x2=2a−b−b2−4ac
- x = − b ± b 2 − 4 a c 2 a x=\displaystyle\frac{-b\pm\sqrt{b^2-4ac}}{2a} x=2a−b±b2−4ac
- x = − b ∓ b 2 − 4 a c 2 a x=\displaystyle\frac{-b\mp\sqrt{b^2-4ac}}{2a} x=2a−b∓b2−4ac
- 不等式
-
x
+
4
>
6
x+4\gt6
x+4>6
\gt. greater than
-
3
+
2
x
<
6
3+2x\lt6
3+2x<6
\It: less than
-
x
+
4
≥
6
x+4\ge6
x+4≥6
ge: greater than or equal to
-
3
+
2
x
≤
6
3+2x\le6
3+2x≤6
\It: less than or equal to
6、不定积分
(1)公式
- ∫ f ( x ) d x = F ( x ) + C , F ′ ( x ) = f ( x ) \displaystyle \int f(x)dx=F(x)+C, F'(x)=f(x) ∫f(x)dx=F(x)+C,F′(x)=f(x)
(2) 示例
- 求 f ( x ) = x 2 − 3 x + 2 f(x)=x^2-3x+2 f(x)=x2−3x+2的不定积分
- ∫ f ( x ) d x = ∫ ( x 2 − 3 x + 2 ) d x = x 3 3 − 3 x 2 2 + 2 x + C \displaystyle \int f(x)dx=\int(x^2-3x+2)dx=\frac{x^3}{3}-\frac{3x^2}{2}+2x+C ∫f(x)dx=∫(x2−3x+2)dx=3x3−23x2+2x+C
(3)利用Python计算不定积分
- 需要导入
sympy
和scipy
两个库
7、定积分
(1)公式
- 牛顿 - 莱布尼茨公式: ∫ a b f ( x ) d x = F ( x ) ∣ b a = F ( b ) − F ( a ) \displaystyle \int_a^bf(x)dx=F(x)\Bigg|{b \atop a}=F(b)-F(a) ∫abf(x)dx=F(x) ab=F(b)−F(a)
(2)示例
- 求 f ( x ) = x 2 − 3 x + 2 f(x)=x^2-3x+2 f(x)=x2−3x+2在区间 [ 1 , 2 ] [1,2] [1,2]上的定积分
- ∫ 1 2 f ( x ) d x = ∫ 1 2 ( x 2 − 3 x + 2 ) d x = ( x 3 3 − 3 x 2 2 + 2 x ) ∣ 2 1 = ( 8 3 − 6 + 4 ) − ( 1 3 − 3 2 + 2 ) = 2 3 − 5 6 = − 1 6 \displaystyle \int_1^2f(x)dx=\int_1^2(x^2-3x+2)dx=\left(\frac{x^3}{3}-\frac{3x^2}{2}+2x\right)\Bigg|{2 \atop 1}=\left(\frac{8}{3}-6+4\right)-\left(\frac{1}{3}-\frac{3}{2}+2\right)=\frac{2}{3}-\frac{5}{6}=-\frac{1}{6} ∫12f(x)dx=∫12(x2−3x+2)dx=(3x3−23x2+2x) 12=(38−6+4)−(31−23+2)=32−65=−61
(3)利用Python计算定积分
- 需要导入
sympy
和scipy
两个库