AlexNet网络

AlexNet是2012年开创性的深度卷积神经网络,其使用ReLU激活函数,多GPU训练和LRN等技术,显著提升了模型性能,特别是在ILSVRC-2012比赛中大幅领先。此外,数据增强策略如位置和颜色扰动也是其成功的关键因素之一。
摘要由CSDN通过智能技术生成

AlexNet

研究意义

  1. 开启深度卷积神经网络在计算机视觉领域的应用。
    2012年以前:特征提取——特征筛选——输入分类器
    2012年以后:特征工程和分类集于一体
  2. 加速计算机视觉的应用落地

研究成果

在ILSVRC-2012以超出第二名10.9个百分点获得冠军
在这里插入图片描述
其中:
SIFT+FVs:ILSVRC-2012分类第二名
1CNN:训练一个AlexNet
5CNN:训练五个AlexNet取平均值
1CNN*:在最后一个池化层之后,额外添加第六个卷积层,并使用ImageNet 2011(秋)数据集进行预训练
7CNNs*:两个预训练微调,5CNNs取平均值

创新点

  1. ReLU激活函数
    在这上·里插入图片描述
    注:实线:ReLU、虚线:tanh
    图片表明:ReLU激活函数能够使得模型训练的更快

2.多GPU训练
3.LRNVGG已经证明这个方法无效

优点:有助于AlexNet泛化能力的提升。

LRN:细胞分化变成不同的时候,它会对周围的细胞产生抑制信号,阻止它们向相同方向分布,最种表现细胞命运不同
在这里插入图片描述
公式其实就是假设旁边有一个非常大的数,那么这个数肯定对预测的值有一个非常大的影响

4.Overlapping Pooling
之前的大部分都是卷积核的大小=步进的距离,论文提到的是:卷积核的大小>步进距离。例如:卷积核:3,步进距离:2

网络结构

在这里插入图片描述
论文中提到:C2、C4、C5仅仅当前所在的GPU相连;LRN只在C1、C2中;Max-pooling存在与C5卷积

其中:
C1:conv1-ReLU-LRN-pool
C2:conv2-ReLU-LRN-pool(这里的输入其实还是27*27,27由:224卷积-变成55-max pooling变成27)
C3:conv3-ReLU
C4:conv4-ReLU
C5:conv5-ReLU-Pool

训练技巧

1.drop out有效防止过拟合
训练和测试两个阶段的数据尺度变化,测试时神经元输出值乘以P
2.数据增强
针对位置进行数据增强
训练:改成256256——裁剪224——水平翻转
((256-224)x 2 = 1024)
测试:改成256
256——剪出5个224*224——水平翻转
针对颜色增强
通过PCA方法修改RGB通道的像素值,实现扰动,但是效果有限

可视化

相似图片的第二个全连接层输出特征向量的欧式距离相近

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值