Tushare的学习总结(七):获取大宗交易信息

一、Tushare 概述

Tushare 是一款强大的 Python 财经数据接口包,它免费、开源,为金融从业者和数据爱好者提供了便捷获取各类金融数据的途径。从股票、基金到期货、债券等多领域数据,Tushare 都能轻松获取,助力金融分析与研究工作。

二、安装与初始化

(一)安装 Tushare

通过 pip 命令快速安装:

 
pip install tushare

(二)初始化

使用 Tushare 的专业版接口时,需要进行初始化,获取并传入你的 token:

 
import tushare as ts

# 初始化pro接口,token替换为自己的token

pro = ts.pro_api('your_token')

三、大宗交易数据获取与分析

(一)大宗交易接口介绍

block_trade接口用于获取大宗交易数据,单次最大可获取 1000 条数据,总量不限制。调用该接口需要 300 积分,且有每分钟内限制次数,积分超过 5000 时频次相对较高,可参考积分获取办法提升使用权限。

(二)输入参数说明

  1. ts_code:股票代码,非必填(股票代码和日期至少输入一个参数)。
  1. trade_date:交易日期,格式为YYYYMMDD,非必填。
  1. start_date:开始日期,非必填。
  1. end_date:结束日期,非必填。

(三)输出参数说明

  1. ts_code:股票代码。
  1. trade_date:交易日历。
  1. price:成交价。
  1. vol:成交量(万股)。
  1. amount:成交金额。
  1. buyer:买方营业部。
  1. seller:卖方营业部。

(四)接口使用示例

获取 2018 年 12 月 27 日的大宗交易数据:

 
import tushare as ts

# 初始化pro接口,token替换为自己的token

pro = ts.pro_api('your_token')

# 获取20181227的大宗交易数据

df = pro.block_trade(trade_date='20181227')

print(df.head())

上述代码运行后,df变量将存储获取到的 2018 年 12 月 27 日的大宗交易数据,print(df.head())用于查看前 5 条数据。

(五)数据处理与分析

  1. 筛选特定股票的大宗交易数据

以筛选601108.SH的大宗交易数据为例:

 
# 筛选出601108.SH的大宗交易数据

filtered_df = df[df['ts_code'] == '601108.SH']

print(filtered_df)
  1. 按成交金额排序

对获取到的大宗交易数据按成交金额从高到低排序:

 
sorted_df = df.sort_values(by='amount', ascending=False)

print(sorted_df.head())
  1. 统计各营业部的交易总量

统计每个买方营业部的交易总量:

 
buyer_vol_sum = df.groupby('buyer')['vol'].sum().reset_index()

print(buyer_vol_sum)

四、总结

通过 Tushare 的block_trade接口,我们能够方便地获取大宗交易数据,并运用 Python 强大的数据处理能力进行深入分析。无论是研究个股的大宗交易情况,还是分析市场整体的大宗交易趋势,Tushare 都能提供有力的数据支持。在实际应用中,可根据具体需求灵活调整参数,获取所需数据并进行多样化的分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值