一、Tushare 概述
Tushare 是一款强大的 Python 财经数据接口包,它免费、开源,为金融从业者和数据爱好者提供了便捷获取各类金融数据的途径。从股票、基金到期货、债券等多领域数据,Tushare 都能轻松获取,助力金融分析与研究工作。
二、安装与初始化
(一)安装 Tushare
通过 pip 命令快速安装:
pip install tushare
(二)初始化
使用 Tushare 的专业版接口时,需要进行初始化,获取并传入你的 token:
import tushare as ts
# 初始化pro接口,token替换为自己的token
pro = ts.pro_api('your_token')
三、大宗交易数据获取与分析
(一)大宗交易接口介绍
block_trade接口用于获取大宗交易数据,单次最大可获取 1000 条数据,总量不限制。调用该接口需要 300 积分,且有每分钟内限制次数,积分超过 5000 时频次相对较高,可参考积分获取办法提升使用权限。
(二)输入参数说明
- ts_code:股票代码,非必填(股票代码和日期至少输入一个参数)。
- trade_date:交易日期,格式为YYYYMMDD,非必填。
- start_date:开始日期,非必填。
- end_date:结束日期,非必填。
(三)输出参数说明
- ts_code:股票代码。
- trade_date:交易日历。
- price:成交价。
- vol:成交量(万股)。
- amount:成交金额。
- buyer:买方营业部。
- seller:卖方营业部。
(四)接口使用示例
获取 2018 年 12 月 27 日的大宗交易数据:
import tushare as ts
# 初始化pro接口,token替换为自己的token
pro = ts.pro_api('your_token')
# 获取20181227的大宗交易数据
df = pro.block_trade(trade_date='20181227')
print(df.head())
上述代码运行后,df变量将存储获取到的 2018 年 12 月 27 日的大宗交易数据,print(df.head())用于查看前 5 条数据。
(五)数据处理与分析
- 筛选特定股票的大宗交易数据:
以筛选601108.SH的大宗交易数据为例:
# 筛选出601108.SH的大宗交易数据
filtered_df = df[df['ts_code'] == '601108.SH']
print(filtered_df)
- 按成交金额排序:
对获取到的大宗交易数据按成交金额从高到低排序:
sorted_df = df.sort_values(by='amount', ascending=False)
print(sorted_df.head())
- 统计各营业部的交易总量:
统计每个买方营业部的交易总量:
buyer_vol_sum = df.groupby('buyer')['vol'].sum().reset_index()
print(buyer_vol_sum)
四、总结
通过 Tushare 的block_trade接口,我们能够方便地获取大宗交易数据,并运用 Python 强大的数据处理能力进行深入分析。无论是研究个股的大宗交易情况,还是分析市场整体的大宗交易趋势,Tushare 都能提供有力的数据支持。在实际应用中,可根据具体需求灵活调整参数,获取所需数据并进行多样化的分析。