这里所谓的“光棍”,并不是指单身汪啦~ 说的是全部由1组成的数字,比如1、11、111、1111等。传说任何一个光棍都能被一个不以5结尾的奇数整除。比如,111111就可以被13整除。 现在,你的程序要读入一个整数x
,这个整数一定是奇数并且不以5结尾。然后,经过计算,输出两个数字:第一个数字s
,表示x
乘以s
是一个光棍,第二个数字n
是这个光棍的位数。这样的解当然不是唯一的,题目要求你输出最小的解。
提示:一个显然的办法是逐渐增加光棍的位数,直到可以整除x
为止。但难点在于,s
可能是个非常大的数 —— 比如,程序输入31,那么就输出3584229390681和15,因为31乘以3584229390681的结果是111111111111111,一共15个1。
输入格式:
输入在一行中给出一个不以5结尾的正奇数x
(<1000)。
输出格式:
在一行中输出相应的最小的s
和n
,其间以1个空格分隔。
输入样例:
31
输出样例:
3584229390681 15
这题的数非常大,远超整型大小,所以我一开始想用字符串解决,用字符串代表数字,但用atoi转数字其实跟直接输如数字没有任何区别,所以这个时候一定是需要一个完美的算法来解决。 于是我通过网络搜索了解到一种叫做模拟除法的操作,感觉这种方法对于那些位数很大的数字处理很有效果,大家也可以学习一下。对于这道题我给大家演示下这种算法:
看了这个图之后大家应该就能理解这种模拟除法的算法了吧,这样就可以大大简化计算的位数,是不是特别妙,这是我们小学就学过的算法,但能以这种方式运用,我觉得我在这个方法中受益匪浅,遇到同类问题也可以通过这种算法解决!
接下来我们看一下如何将这个算法以代码实现:
#include<stdio.h>
int main(void)
{
int cn=1; //记录位数;
int n,m=1;
scanf("%d",&n);
//先将1的位数调到可以除n;
while(m<n)
{
m=10*m+1;
cn++;
}
while(1)
{
//模拟除法,只能说这个方法真的很妙。
printf("%d",m/n);
if(m%n==0)
{
break;
}
m=(m%n)*10+1;
cn++;
}
printf(" %d",cn);
return 0;
}
希望大家可以学到这种算法并运用到其他题目!