LeetCode239 滑动窗口最大值
题目链接:https://programmercarl.com/0239.%E6%BB%91%E5%8A%A8%E7%AA%97%E5%8F%A3%E6%9C%80%E5%A4%A7%E5%80%BC.html代码:
class MyQueue {
Deque<Integer> deque = new LinkedList<>();
// 当滑动窗口要丢弃的元素等于当前队列出口处的元素时,做pop操作
void poll(int val) {
if (!deque.isEmpty() && val == deque.peek()) {
deque.poll();
}
}
// 滑动窗口要加入队列的元素要和队尾元素作比较,如果大于队尾元素,要把队尾元素舍弃,直到新加入的元素小于队尾元素
void add(int val) {
while (!deque.isEmpty() && val > deque.peekLast()) {
deque.pollLast();
}
deque.add(val);
}
// 返回队头元素,此时队头元素维护的就是当前滑动窗口的最大值
int getMax() {
return deque.peek();
}
}
public class code239 {
public int[] maxSlidingWindow(int[] nums, int k) {
// 定义存放结果的数组
int[] res = new int[nums.length - k + 1];
int n = 0;
MyQueue myQueue = new MyQueue();
// 先把前k个元素加入到队列中
for (int i = 0; i < k; i++) {
myQueue.add(nums[i]);
}
res[n++] = myQueue.getMax();
for (int i = k; i < nums.length; i++) {
// 滑动窗口移动伴随着队列的pop和push
myQueue.poll(nums[i - k]);
myQueue.add(nums[i]);
// 每次滑动窗口移动后要将队列中维护的最大值加入到结果数组当中
res[n++] = myQueue.getMax();
}
return res;
}
}
大体思路就是维护一个单调队列,滑动窗口新加入的元素如果大于队尾元素,则移除队尾元素,这样每次滑动窗口移动完之后,队头元素就是该滑动窗口中的最大值
LeetCode347 前 K 个高频元素
题目链接:https://programmercarl.com/0347.%E5%89%8DK%E4%B8%AA%E9%AB%98%E9%A2%91%E5%85%83%E7%B4%A0.html代码:
public class code347 {
public int[] topKFrequent(int[] nums, int k) {
// 维护一个哈希表,哈希表的键存放nums中的元素,对应的值存放该元素出现的频率
Map<Integer, Integer> map = new HashMap<>();
for (int num : nums) {
map.put(num, map.getOrDefault(num, 0) + 1);
}
// 使用小顶堆进行排序,用优先级队列模拟小顶堆,优先级队列中只存储k个元素
PriorityQueue<Integer> pq = new PriorityQueue<>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return map.get(o1) - map.get(o2);
}
});
for (Integer key : map.keySet()) {
if (pq.size() < k) {
pq.add(key);
} else if (map.get(key) > map.get(pq.peek())) { // 当前元素出现次数大于栈顶元素出现次数
pq.poll();
pq.add(key);
}
}
int[] res = new int[k];
for (int i = k - 1; i >= 0 ; i--) {
res[i] = pq.poll();
}
return res;
}
}
使用优先级队列模拟小顶堆,具体实现看代码,代码写了注释