知识点:线段树,数学
这个感觉像是在线段树里面进行剪枝,这个和开方的比较相似,一个数最多开7次方,那么它又最多可以取多少次余呢,这里的取余指的是取余成功的,也就是余数小于等于被取余的数,有一个数学的公式,就是一个数取余之后小于原来的二分之一,所以一个数x最多取余成功logx次,根据这个编写代码,线段树里面维护区间最大值,不需要向下传递,最大值小于余数那么就不要向下递归,因为就算递归了也还是一样的,这样就算没有了懒标记也不会超时,
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5;
struct tree {
int l, r;
long long sum, max;
};
long long a[N];
tree t[N * 4];
void pushup(int p) {
t[p].sum = t[p * 2].sum + t[p * 2 + 1].sum;
t[p].max = max(t[p * 2].max, t[p * 2 + 1].max);
}
void build(int p, int l, int r) {
t[p].l = l; t[p].r = r;
if (l == r) {
t[p].sum = t[p].max = a[l];
return;
}
int mid = (l + r) / 2;
build(p * 2, l, mid);
build(p * 2 + 1, mid + 1, r);
pushup(p);
}
void update(int p, int l, int r, int x) {
if (t[p].l == t[p].r) {
t[p].sum %= x; t[p].max %= x;
return;
}
int mid = (t[p].l + t[p].r) / 2;
if (l <= mid && t[p * 2].max >= x) update(p * 2, l, r, x);
if (r > mid && t[p * 2 + 1].max >= x) update(p * 2 + 1, l, r, x);
pushup(p);
}
void update2(int p, int index, int x) {
if (t[p].l == t[p].r) {
t[p].sum = t[p].max = x;
return;
}
int mid = (t[p].l + t[p].r) / 2;
if (index <= mid) update2(p * 2, index, x);
else update2(p * 2 + 1, index, x);
pushup(p);
}
long long query(int p, int l, int r) {
if (l <= t[p].l && r >= t[p].r) return t[p].sum;
int mid = (t[p].l + t[p].r) / 2;
long long val = 0;
if (l <= mid) val += query(p * 2, l, r);
if (r > mid) val += query(p * 2 + 1, l, r);
return val;
}
int main() {
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
}
build(1, 1, n);
while (m--) {
int op, x, y, z;
scanf("%d%d%d", &op, &x, &y);
if (op == 1) {
printf("%lld\n", query(1, x, y));
} else if (op == 2) {
scanf("%d", &z);
update(1, x, y, z);
} else {
update2(1, x, y);
}
}
return 0;
}