知识点:离散化,差分
这个题的数据范围比较大,看起来也有点像区间贪心,但是最近在学线段树,就拿来练习离散化,用的是离散化+差分的做法,就是先离散化,如果排好序中的数组,相邻两个不同的元素不连续,那么在其中加一个元素,这样需要的空间是4倍,然后就开始用差分数组,进行区间加一,然后求前缀和,然后再线性扫描一遍记录答案就行了,感觉写的还是有点麻烦的,不像有些思维方法代码看起来那么短,优点是这种方法不需要动脑子,流程化拿来就能写
#include <bits/stdc++.h>
using namespace std;
const int N = 2e4 + 5;
int a[N], b[N], c[N * 2], d[N * 4], e[N * 4];
int main() {
int n;
cin >> n;
for (int i = 1; i <= n; i++) {
scanf("%d%d", &a[i], &b[i]);
b[i]--;
c[i] = a[i]; c[i + n] = b[i];
}
sort(c + 1, c + n * 2 + 1);
int cnt = 0;
for (int i = 1; i <= n * 2; i++) {
if (!cnt) d[++cnt] = c[i];
if (cnt && c[i] > c[i - 1]) {
if (c[i] > c[i - 1] + 1) d[++cnt] = c[i] - 1;
d[++cnt] = c[i];
}
}
for (int i = 1; i <= n; i++) {
int t1 = lower_bound(d + 1, d + cnt + 1, a[i]) - d;
int t2 = lower_bound(d + 1, d + cnt + 1, b[i]) - d;
e[t1]++; e[t2 + 1]--;
}
int flag = 0, ans = 0;
for (int i = 1; i <= cnt; i++) {
e[i] += e[i - 1];
if (e[i]) {
if (flag == 0) { flag = 1; ans++; }
else ans += d[i] - d[i - 1];
} else {
flag = 0;
}
}
cout << ans;
return 0;
}