java目标和(力扣Leetcode106)

文章讨论了如何利用动态规划解决正整数数组与目标和问题,通过添加符号构建满足条件的表达式计数。关键在于状态转移和初始设置。
摘要由CSDN通过智能技术生成

目标和

力扣原题

问题描述

给定一个正整数数组 nums 和一个整数 target,向数组中的每个整数前添加 ‘+’ 或 ‘-’,然后串联起所有整数,可以构造一个表达式。返回可以通过上述方法构造的、运算结果等于 target 的不同表达式的数目。

示例

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

分析

这是一个典型的动态规划问题。我们需要通过添加 ‘+’ 或 ‘-’ 来构造表达式,使得表达式的结果等于 target。可以将问题转化为两部分:一部分是使用 ‘+’ 号的数的和,另一部分是使用 ‘-’ 号的数的和。

思考:将使用+号的正数的一堆之和 减去 使用-号的负数的绝对值一堆之和不就是target嘛,就和”最后一块石头“分成两堆相减的思路一样

那么我们就可以将其中一堆定义成一个一维动态规划数组 dp,其中 dp[i] 表示总和为 i 的表达式的数目。

状态定义

定义一个一维动态规划数组 dp,其中 dp[i] 表示总和为 i 的表达式的数目。

状态转移方程 (有多少种方法的递推公式)

对于每一个数字 nums[i],我们有两种选择:使用 ‘+’ 号或者使用 ‘-’ 号(抽象为选和不选)。因此状态转移方程为:

dp[i] += dp[i - nums[j]];

在这里插入图片描述

初始化

我们需要对动态规划数组进行初始化。初始时,总和为 0 的表达式有 1 种方法,其余为 0。
(如果初始化为0 ,则递推推导出来的全是0 了)

Java解题

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        // 计算数组的总和
        int sum = 0 ;
        for (int a : nums){
            sum += a;
        }
        // 计算目标和的边界值
        int n = (sum + target)/2;
        // 如果目标和的边界值不为整数,则无法得到目标和,返回 0
        if ((sum + target) % 2 !=0){
            return 0;
        }
        // 初始化动态规划数组
        int[] dp =  new int[n +1];
        dp[0] = 1; // 初始时,总和为 0 的表达式有 1 种方法
        // 遍历数组,更新动态规划数组
        for ( int i =0; i< nums.length;i++){//遍历物品
            for (int j = n;j >=nums[i]; j--){//遍历背包,!注意倒序和等号!
                dp [j] += dp[j-nums[i]]; // 有多少种方法的递推公式
            }
        }
        // 返回总和为目标和的表达式的数目
        return dp[n];
    }
}

总结

通过动态规划的思想,我们可以解决这个问题。首先计算数组的总和,然后根据状态转移方程进行状态转移,最终返回总和为 target 的表达式的数目。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BenChuat

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值