- 博客(5)
- 收藏
- 关注
原创 FBCSP
2.由于分类问题是多类别的,使用OVR分类,这要求我们为所有OVR组合对训练分类器,这里有4个(类别1与所有其他,类别2与所有其他等)。4.通过在保持的验证集上评估训练的分类器,找到弹性网逻辑回归的最佳λ值,该值最大化了验证集的准确性。1对于基于振荡的SMR(感觉运动节律)分类,传统方法是作者自己实现的一对一(OVR)滤波器组公共空间模式(FBCSP)算法,如“的步长将EEG信号带通滤波为9个非重叠滤波器组,从4Hz开始:4-8Hz,8-12Hz......36-40Hz。我们设置弹性净惩罚α=0.95。
2023-05-29 09:32:07 469
原创 EEGNet
由2. Depthwise Convolution(2次)和Pointwise Convolution(1次)(逐点的卷积层操作)组成。EEGNet由一个普通卷积,一个Depthwise Convolution和一个深度可分离卷积组成。2. Depthwise Convolution---逐通道的卷积层操作。3.separable convolution(深度可分离卷积)这种卷积方式的缺点就是,在各个通道上。
2023-05-12 19:56:54 416 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人