PAT 1103 缘分数

该文章描述了一个编程问题,要求在给定整数区间[m,n]中找出是否存在满足特定条件的缘分数对,即a和b满足a和a-1的立方差等于b和b-1的平方和。文章提供了一个C++程序实现方法。
摘要由CSDN通过智能技术生成

所谓缘分数是指这样一对正整数 a 和 b,其中 a 和它的小弟 a−1 的立方差正好是另一个整数 c 的平方,而 c 正好是 b 和它的小弟 b−1 的平方和。例如 83−73=169=132,而 13=32+22,于是 8 和 3 就是一对缘分数。

给定 a 所在的区间 [m,n],是否存在缘分数?

输入格式:

输入给出区间的两个端点 0<m<n≤25000,其间以空格分隔。

输出格式:

按照 a 从小到大的顺序,每行输出一对缘分数,数字间以空格分隔。如果无解,则输出 No Solution

输入样例 1:

8 200

输出样例 1:

8 3
105 10

输入样例 2:

9 100

输出样例 2:

No Solution
#include <bits/stdc++.h>
using namespace std;
int main()
{
    long long int m,n,i,j,f=0;
    cin>>m>>n;
    for(i=m;i<=n;i++){
        for(j=1;j*j<n;j++){
            if((i*i*i-(i-1)*(i-1)*(i-1))==((j*j)+(j-1)*(j-1))*((j*j)+(j-1)*(j-1))){
                if(i==j){
                    break;
                }
                else{
                    cout<<i<<' '<<j<<endl;
                    f++;
                    break;
                    }
            }
        }
    }
    if(f==0){
        cout<<"No Solution";
    }
}

 注:最后一个测试点是1 1这组数,因为两个相等所以不是缘分数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值