所谓缘分数是指这样一对正整数 a 和 b,其中 a 和它的小弟 a−1 的立方差正好是另一个整数 c 的平方,而 c 正好是 b 和它的小弟 b−1 的平方和。例如 83−73=169=132,而 13=32+22,于是 8 和 3 就是一对缘分数。
给定 a 所在的区间 [m,n],是否存在缘分数?
输入格式:
输入给出区间的两个端点 0<m<n≤25000,其间以空格分隔。
输出格式:
按照 a 从小到大的顺序,每行输出一对缘分数,数字间以空格分隔。如果无解,则输出 No Solution
。
输入样例 1:
8 200
输出样例 1:
8 3
105 10
输入样例 2:
9 100
输出样例 2:
No Solution
#include <bits/stdc++.h>
using namespace std;
int main()
{
long long int m,n,i,j,f=0;
cin>>m>>n;
for(i=m;i<=n;i++){
for(j=1;j*j<n;j++){
if((i*i*i-(i-1)*(i-1)*(i-1))==((j*j)+(j-1)*(j-1))*((j*j)+(j-1)*(j-1))){
if(i==j){
break;
}
else{
cout<<i<<' '<<j<<endl;
f++;
break;
}
}
}
}
if(f==0){
cout<<"No Solution";
}
}
注:最后一个测试点是1 1这组数,因为两个相等所以不是缘分数