最近对问题

p1 = ( x1 , y1 ) , p2 = ( x2 , y2 ) , , pn = ( xn , yn ) 是平面上 n 个点构成的集合 S , 设计算
法找出集合 S 中距离最近的点对。
蛮力法
  1. 初始化最小距离:首先,将最小距离 minDist 初始化为正无穷大(+∞),表示当前还没有找到任何点对。

  2. 双重循环遍历所有点对:使用两个嵌套的循环遍历集合 S 中的所有点对 (pi​,pj​),其中 i<j。

  3. 计算距离:对于每一对点 (pi​,pj​),计算其欧几里得距离的平方 d=(xi​−xj​)2+(yi​−yj​)2。注意,这里直接计算平方,避免了开平方根的操作,因为平方根函数是单调增函数,不影响比较结果。

  4. 更新最小距离:如果当前点对的距离平方 d 小于 minDist,则更新 minDist 为 d,并记录这对点的索引 index1 和 index2

  5. 返回最小距离:循环结束后,返回最小距离 minDist

#include <iostream>  
#include <vector>  
#include <cmath> // 实际上在这个程序中未直接使用,但通常用于数学运算  
#include <limits.h> // 包含 INT_MAX 的定义  

using namespace std;

// 函数声明  
int ClosestPoints(int n, const int x[], const int y[], int& index1, int& index2);

int main() {
    int n; // 点的数量  
    cout << "请输入点的数量: ";
    cin >> n;

    vector<int> x_coords(n), y_coords(n); // 使用vector存储坐标  

    cout << "请输入各点的x坐标和y坐标(每输入一个坐标后按回车,依次输入所有点的坐标):\n";
    for (int i = 0; i < n; ++i) {
        cin >> x_coords[i];
        cin >> y_coords[i];
    }

    int index1, index2; // 存储最近点对的索引  
    int minDistSquared = ClosestPoints(n, x_coords.data(), y_coords.data(), index1, index2);

    // 输出最近点对的坐标和它们之间的实际距离  
    cout << "距离最近的点对是: (" << x_coords[index1] << ", " << y_coords[index1] << ") 和 (" << x_coords[index2] << ", " << y_coords[index2] << ")\n";
    cout << "它们之间的距离是: " << sqrt(minDistSquared) << "\n";

    return 0;
}

// 函数定义  
int ClosestPoints(int n, const int x[], const int y[], int& index1, int& index2) {
    int minDistSquared = INT_MAX; // 使用 INT_MAX 初始化最小距离的平方为最大整数  
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            int d_squared = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
            if (d_squared < minDistSquared) {
                minDistSquared = d_squared;
                index1 = i;
                index2 = j;
            }
        }
    }
    return minDistSquared; // 返回最小距离的平方  
}

分治法

  1. 定义点结构体
    • struct Point { int x, y; }; 定义了一个表示二维点的结构体,包含两个整数成员变量 x 和 y,分别表示点的横坐标和纵坐标。
  2. 比较函数
    • bool compareX(const Point& a, const Point& b) 是一个用于按 x 坐标排序点的比较函数。
  3. 辅助函数
    • int stripClosest(const vector<Point>& strip, int d) 是一个在条带内查找最近对的辅助函数。它接受一个按 y 坐标排序的点集 strip 和一个距离 d,然后返回条带内点对的最近距离。这个函数使用蛮力法(即嵌套循环)来比较条带内所有点对之间的距离。
  4. 分治函数
    • int closestPoints(const std::vector<Point>& S) 是实现分治算法的主函数。它接受一个点集 S,并返回点集中距离最近的点对的距离的平方(为了避免开方运算,提高效率)。
    • 函数首先检查点集的大小。如果小于 2,则返回无穷大(在这里用 INT_MAX 表示)。
    • 然后,它复制点集并按 x 坐标排序。
    • 接着,找到中位数点,并根据中位数将点集分成两部分:S1 和 S2
    • 对 S1 和 S2 递归调用 closestPoints 函数,得到它们内部的最近距离 d1 和 d2
    • 然后,计算 d 为 d1 和 d2 中的较小值。
    • 接下来,构造一个条带 P,包含与中位数 x 坐标距离小于 d 的所有点。
    • 在条带 P 内调用辅助函数 stripClosest 来查找最小距离 dPrime
    • 最后,返回 d 和 dPrime 中的较小值作为全局最小距离的平方。
  5. 主函数
    • int main() 函数中创建了一个示例点集,并调用 closestPoints 函数来计算最近点对的距离。然后,它计算距离的平方根并输出结果。
#include <vector>  
#include <algorithm>  
#include <cmath>  
#include <climits> // 用于定义足够大的数来表示无穷大  
#include<iostream>
using namespace std;
// 定义点的结构体  
struct Point {
    int x, y;
};

// 比较函数,用于按x坐标排序点  
bool compareX(const Point& a, const Point& b) {
    return a.x < b.x;
}

// 辅助函数,用于在条带内查找最近对  
int stripClosest(const vector<Point>& strip, int d) {
    int minDist = d; // 初始化最小距离为当前已知的最小距离d  
    vector<Point> sortedStrip(strip); // 复制条带并按y坐标排序  
    sort(sortedStrip.begin(), sortedStrip.end(), [](const Point& a, const Point& b) { return a.y < b.y; });

    // 在排序后的条带内使用蛮力法查找最小距离  
    for (size_t i = 0; i < sortedStrip.size(); ++i) {
        for (size_t j = i + 1; j < sortedStrip.size() && (sortedStrip[j].y - sortedStrip[i].y) < minDist; ++j) {
            int dist = (sortedStrip[i].x - sortedStrip[j].x) * (sortedStrip[i].x - sortedStrip[j].x) +
                (sortedStrip[i].y - sortedStrip[j].y) * (sortedStrip[i].y - sortedStrip[j].y);
            if (dist < minDist) {
                minDist = dist;
            }
        }
    }
    return minDist;
}

// 分治法解决最近对问题  
int closestPoints(const std::vector<Point>& S) {
    int n = S.size();
    if (n < 2) {
        // 如果点的数量小于2,则没有最近对,可以返回一个表示无穷大的数  
        return INT_MAX; // 或者其他足够大的数  
    }

    // 按x坐标排序点集  
    vector<Point> sortedS(S);
    sort(sortedS.begin(), sortedS.end(), compareX);

    // 找到中位数(这里使用中位数点的x坐标值)  
    int mIndex = n / 2;
    Point median = sortedS[mIndex];

    // 分割点集为S1和S2  
    vector<Point> S1, S2;
    for (int i = 0; i < n; ++i) {
        if (i < mIndex) {
            S1.push_back(sortedS[i]);
        }
        else if (i > mIndex) { // 跳过中位数  
            S2.push_back(sortedS[i]);
        }
    }

    // 递归求解S1和S2中的最近对距离  
    int d1 = closestPoints(S1);
    int d2 = closestPoints(S2);
    int d = std::min(d1, d2);

    // 构造条带P,包含S1和S2中与中位数m的x坐标距离小于d的点  
    vector<Point> P;
    for (const auto& point : sortedS) {
        if (abs(point.x - median.x) < d) {
            P.push_back(point);
        }
    }

    // 在条带P内使用辅助函数查找最小距离  
    int dPrime = stripClosest(P, d);

    // 返回全局最小距离  
    return min(d, dPrime);
}

int main() {

    // 示例点集(需要用户输入或硬编码)  
    vector<Point> points = { {0, 0}, {1, 1}, {2, 2}, {20, 20}, {21, 21}, {10, 15} }; // 用实际的点初始化  

    // 调用函数并输出结果  
    int minDistSquared = closestPoints(points);
    double minDist = sqrt(minDistSquared);
    cout << "最近点对的距离是: " << minDist << endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值