在时间序列分析领域,KAN(Kolmogorov-Arnold Network)的应用正逐渐成为研究的热门方向。KAN凭借其强大的函数拟合能力和出色的可解释性,能够高效捕捉时间序列中的复杂关系与非线性模式。
最近,基于KAN的时间序列预测模型RMoK在真实世界的数据集上取得了显著的性能提升,不仅预测准确性大幅提高,模型的稳定性也得到了显著增强。
为了帮助大家更好地了解这一前沿方向,我整理了一些【KAN+时间序列】的研究论文,全部论文PDF版,工中号【沃的顶会】回复 KAN时序 即可领取。
KAN-AD:Time Series Anomaly Detection with Kolmogorov-Arnold Networks
文章解析
本文提出了一种基于Kolmogorov-Arnold网络(KAN)的时间序列异常检测方法KAN-AD。
该方法通过引入Fourier级数来强调全局时间模式,从而减轻局部峰值和下降的影响,提高了异常检测的准确性和效率。
实验结果表明,KAN-AD相比现有最先进方法,准确率提高了15%,推理速度提升了55倍。
创新点
1.首次将Kolmogorov-Arnold表示定理引入时间序列异常检测领域,通过重新定义问题提高了检测准确率并显著降低了模型复杂度。
2.一种新型的时间序列异常检测方法,通过精心设计的单变量函数不仅提高了检测准确率&