NeurIPS 2025,即第39届神经信息处理系统大会,将于2025年12月9日至15日在美国圣地亚哥举行。
作为机器学习和人工智能领域的顶级会议之一,NeurIPS 2025将汇聚全球顶尖的研究人员和从业者,共同探讨神经网络、深度学习、强化学习等前沿领域的最新进展,时间序列方向依旧是其中的重要研究领域。
目前,NeurIPS 2025的截稿日期为2025年5月1日,我整理了一些NeurIPS 2024时间序列方向的相关论文,准备投稿的同学,工棕号【沃的顶会】回复 NIPS时序 即可领取。
Rethinking the Power of Timestamps for Robust Time Series Forecasting:AGlobal-Local Fusion Perspective
文章解析
本文提出了一种名为GLAFF的新框架,通过利用时间戳中的全局信息来增强时间序列预测模型的鲁棒性。
GLAFF能够自适应地调整全局和局部信息的权重,从而提高预测性能。
创新点
1.提出了GLAFF框架,首次将时间戳作为全局信息源进行建模,显著提升了时间序列预测的鲁棒性。
2.GLAFF是一个即插即用的模块,可以无缝集成到任何时间序列预测型中。
3.通过自适应融合全局和局部信息,GLAFF在多个真实数据集上显著提高了主流预测模型的平均性能。
研究方法
1.使用注意力机制对时间戳进行单独建模,提取全局依赖关系。
2.引入鲁棒去规范化器处理滑动窗口内的异常值,减轻数据漂移的影响。
3.通过自适应组合器动态调整全局映射和局部预测的权重,生成最终预测结果。
研究结论
1.GLAFF框架显著增强了时间序列预测模型的鲁棒性和准确性。
2.实验结果表明,GLAFF在九个真实数据集上平均性能提升12.5%,超越了现有最先进方法5.5%。
3.GLAFF作为一个通用框架,可以与任何时间序列预测模型无缝协作。
AutoTimes:Autoregressive Time Series Forecasters via Large Language Models
文章解析
本文提出了一种新的方法AutoTimes,通过将大规模语言模型(LLM)重新用于时间序列预测,利用其自回归特性和多步生成能力。
该方法通过将时间序列投影到语言嵌入空间,并自回归地生成未来预测,实现了灵活的预测长度和高效的训练/推理速度。
创新点
1.提出了AutoTimes,一种利用大规模语言模型自回归特性的方法,实现任意长度的时间序列预测。
2.引入了上下文预测(in-context forecasting),通过相关时间序列提示增强预测性能。
3.使用LLM嵌入的时间戳作为位置嵌入,利用时间顺序信息对多变量时间序列进行对齐。
4.在保持高性能的同时,显著减少了训练和推理时间,并展示了零样本泛化能力。
研究方法
1.将时间序列段独立嵌入到语言模型的潜在空间中,通过一致的训练目标:下一个标记预测。
2.冻结LLM,仅调整时间序列的标记嵌入和投影,减少训练成本。
3.采用自回归推理方式,不再受限于特定的回溯/预测长度。
4.通过引入相关时间序列提示,实现上下文预测,进一步利用时间顺序信息。
研究结论
1.通过继承LLM的自回归特性,AutoTimes能够实现任意长度的时间序列预测,并具备时间顺序感知能力。
2.与现有方法相比,AutoTimes在性能上表现出色,同时节省了超过80%的训练和推理时间。
3.AutoTimes展示了零样本泛化能力和上下文预测能力,进一步扩展了时间序列预测的应用范围。