贝叶斯神经网络(BNN)作为深度学习领域的一个新兴方向,近年来取得了显著进展。BNN通过引入概率分布来描述网络参数的不确定性,从而在处理数据时能够更好地应对噪声和异常值,实现更高的鲁棒性。
例如,近期的研究提出了一种基于贝叶斯神经网络的新方法,用于多轴疲劳寿命预测及其不确定性量化。此外,BNN不仅代码实现简单,还可以与LSTM、Transformer等热门网络相结合,在各种下游任务中显著提升模型表现。
这些创新成果不仅展示了BNN在目标检测领域的强大潜力,还为未来的研究提供了新的方向和思路。我整理了10篇关于【贝叶斯神经网络】的相关论文,全部论文PDF版,工中号 沃的顶会 回复“10BNN”即可领取。
On the Robustness of Bayesian Neural Networks to Adversarial Attacks
文章解析
本文研究了贝叶斯神经网络(BNNs)在对抗攻击下的鲁棒性,证明了在无限宽神经网络和大量数据的极限情况下,BNNs对基于梯度的对抗攻击具有鲁棒性。
通过理论分析和实验验证,文章表明BNNs在数据流形上的梯度期望为零,从而提供了对抗攻击的鲁棒性保证。
创新点
证明了在无限宽神经网络和大量数据的极限情况下,BNNs对基于梯度的对抗攻击具有鲁棒性。
提出了BNNs在数据流形上的梯度期望为零的理论,解释了其鲁棒性的来源。
通过实验验证了BNNs在对抗攻击下的鲁棒性,并展示了其在高精度和鲁棒性之间的正相关性。
研究方法
通过理论推导,证明了在无限宽神经网络和大量数据的极限情况下,BNNs对基于梯度的对抗攻击具有鲁棒性。
使用高斯过程(GPs)的收敛性,证明了BNNs在数据流形上的梯度期望为零。
在MNIST、Fashion MNIST和合成数据集上进行实验,验证了BNNs在对抗攻击下的鲁棒性。
比较了BNNs和确定性神经网络在对抗攻击下的表现,展示了BNNs的优越性。
研究结论
在无限宽神经网络和大量数据的极限情况下,BNNs对基于梯度的对抗攻击具有鲁棒性。
BNNs在数据流形上的梯度期望为零,从而提供了对抗攻击的鲁棒性保证。
实验结果表明,BNNs在高精度和鲁棒性之间表现出正相关性,且在高精度下具有更强的鲁棒性。
Variational Bayesian Neural Networks via Resolution of Singularities
文章解析
文章从奇异学习理论出发,剖析变分推断在贝叶斯神经网络中的问题,设计新变分族并实验对比,为优化变分推断提供了理论与实践依据。
创新点
利用奇异学习理论解释贝叶斯神经网络变分推断中测试对数预测密度与变分目标间的差异。
基于奇异学习理论设计理想变分族,缩小变分近似差距。
通过实验对比广义伽马和高斯两种基础分布,分析变分系数对模型的影响。
研究方法
理论分析,借助奇异学习理论推导后验分布渐近形式和变分系数关系。
构建理想变分族,基于奇异学习理论成果进行设计。
实验对比,以归一化最小变分自由能和变分泛化误差为指标,对比广义伽马与高斯基础分布。
渐近分析,利用大样本渐近性质研究模型证据和变分近似差距。
研究结论
实验表明广义伽马基础分布在特定条件下能降低归一化最小变分自由能,展现优势。
变分系数关系复杂,实际中存在有利和不利情形,选择变分族需综合考虑。
研究存在局限,未来可深入探讨理论界限和高斯基础分布的相关结果。