1. 题目
时间限制:1s
空间限制:32MB
题目描述:
-
星际战争开展了100年之后,NowCoder终于破译了外星人的密码!他们的密码是一串整数,通过一张表里的信息映射成最终4位密码。表的规则是:n对应的值是矩阵X的n次方的左上角,如果这个数不足4位则用0填充,如果大于4位的则只输出最后4位。
|1 1|^n => |Xn ..| |1 0| |.. ..| 例如n=2时, |1 1|^2 => |1 1| * |1 1| => |2 1| |1 0| |1 0| |1 0| |1 1| 即2对应的数是“0002”。
输入描述:
- 输入有多组数据。
- 每组数据两行:第一行包含一个整数n (1≤n≤100);第二行包含n个正整数Xi (1≤Xi≤10000)
输出描述:对应每一组输入,输出一行相应的密码。
示例:
输入:6
18 15 21 13 25 27
5
1 10 100 1000 10000
输出:418109877711037713937811
00010089410135017501
2. 矩阵相乘
想做出这道题首先我们要先会矩阵相乘,矩阵相乘规则如下:
维度要求:要进行矩阵乘法,矩阵 A A A 的列数必须等于矩阵 B B B 的行数。即如果矩阵 A A A 的维度是 m × n m \times n m×n,矩阵 B B B 的维度必须是 n × p n \times p n×p。乘积矩阵 C = A B C = AB C=AB 的维度将是 m × p m \times p m×p。
元素计算:矩阵 C C C 中的元素 c i j c_{ij} cij 是通过将矩阵 A A A 的第 i i i 行与矩阵 B B B 的第 j j j 列对应元素相乘后求和得到的。公式表示为:
c i j = ∑ k = 1 n a i k b k j c_{ij} = \sum_{k=1}^n a_{ik} b_{kj} cij=k=1∑naikbkj
其中, a i k a_{ik} aik 是矩阵 A A A 的第 i i i 行第 k k k 列的元素, b k j b_{kj} bkj 是矩阵 B B B 的第 k k k 行第 j j j 列的元素。
示例:假设有两个矩阵 A A A 和 B B B:矩阵 A = ( 1 2 3 4 ) A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} A=(1324),矩阵 B = ( 5 6 7 8 ) B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \\ \end{pmatrix} B=(5768),计算矩阵 C = A B C = AB C=AB:
-
c 11 c_{11} c11 的计算: c 11 = 1 ⋅ 5 + 2 ⋅ 7 = 5 + 14 = 19 c_{11} = 1 \cdot 5 + 2 \cdot 7 = 5 + 14 = 19 c11=1⋅5+2⋅7=5+14=19
-
c 12 c_{12} c12 的计算: c 12 = 1 ⋅ 6 + 2 ⋅ 8 = 6 + 16 = 22 c_{12} = 1 \cdot 6 + 2 \cdot 8 = 6 + 16 = 22 c12=1⋅6+2⋅8=6+16=22
-
c 21 c_{21} c21 的计算: c 21 = 3 ⋅ 5 + 4 ⋅ 7 = 15 + 28 = 43 c_{21} = 3 \cdot 5 + 4 \cdot 7 = 15 + 28 = 43 c21=3⋅5+4⋅7=15+28=43
-
c 22 c_{22} c22 的计算: c 22 = 3 ⋅ 6 + 4 ⋅ 8 = 18 + 32 = 50 c_{22} = 3 \cdot 6 + 4 \cdot 8 = 18 + 32 = 50 c22=3⋅6+4⋅8=18+32=50
最终,矩阵 C = ( 19 22 43 50 ) C = \begin{pmatrix} 19 & 22 \\ 43 & 50 \\ \end{pmatrix} C=(19432250)
注意事项:
- 矩阵乘法不满足交换律,即 A B ≠ B A AB \neq BA AB=BA(在绝大多数情况下)。
- 矩阵乘法满足结合律,即 ( A B ) C = A ( B C ) (AB)C = A(BC) (AB)C=A(BC)。
- 矩阵乘法满足分配律,即 A ( B + C ) = A B + A C A(B + C) = AB + AC A(B+C)=AB+AC。
3. 找规律
找规律可以发现,这道题的题解其实就是斐波那契数列!
下面我们分析一下:
当 n = 1 时:
|1 1| 左上角值 = 1
|1 0|
当 n = 2 时:
|1 1|*|1 1|=|2 1| 左上角值 = 2
|1 0| |1 0| |1 1|
当 n = 3 时:
|2 1|*|1 1|=|3 2| 左上角值 = 3
|1 1| |1 0| |2 1|
当 n = 4 时:
|3 2|*|1 1|=|5 3| 左上角值 = 5
|2 1| |1 0| |3 2|
当 n = 5 时:
|5 3|*|1 1|=|8 5| 左上角值 = 8
|3 2| |1 0| |5 3|
1, 2, 3, 5, 8, ...
这正是一个斐波那契数列(少了第一个 1,不过影响不大),所以对这道题的求解就变成了对斐波那契数列的求解,即:后一个数等于前两个数之和!
4. 注意
题目要求 如果这个数不足 4 位则用 0 填充,如果大于 4 位的则只输出最后 4 位,如何解决?
- 如果不足 4 位用 0 填充,可以在输出时使用
printf("%04d", result);
解决; - 如果大于 4 位只输出最后 4 位,可以在计算时把
result % 10000
,即可得到后 4 位。
5. 题解
#include <iostream>
#include <vector>
using namespace std;
void Fibonacci(vector<int>& fib)
{
for (int i = 2; i <= 10000; i++)
{
fib.push_back((fib[i - 1] + fib[i - 2]) % 10000);
}
}
int main()
{
// 找规律发现密码数列就是一个斐波那契数列
vector<int> fib = { 1, 1 };
Fibonacci(fib);
int n = 0;
while (cin >> n)
{
int num = 0;
for (int i = 0; i < n; i++)
{
cin >> num;
printf("%04d", fib[num]);
}
printf("\n");
}
return 0;
}