目录
62.不同路径
本题大家掌握动态规划的方法就可以。 数论方法 有点非主流,很难想到。
思路
我还是先把上次动态规划的五部曲复制过来吧,详情可以看我第四十一天的文章。
动态规划五部曲
1、明白自己定义的dp数组的含义究竟是什么(很重要,后面写着写着尤其是写到二维就时常会忘记dp[i]到底代表什么了,所以一开始就要不断提醒自己记住含义)
2、推导出递推公式(相当于把大问题分解成重复的小问题,找到递推关系式)
3、初始化dp数组。(这个初始化有时候和第二步有关,所以这是第三步)
4、确定遍历顺序是从前向后还是从后向前)
5、自己举个小例子测试一下,看看输出和设想的是不是相同
今天是首次出现二维的动态规划,我就细讲一下吧,这周日就要考CSP了真的时间很紧(每日崩溃1/1)
第一步,确定dp[ i ][ j ] 的含义 ,dp[i][j]表示从左上角走到第i行第j列的路径数量。
第二步,推导出递推公式,那由题目可知,走到第i行,第j列无非就是从他的上面走下来或者从他的左边走过来嘛,所以递推公式就是dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。(诶,你可能会说那从最上面那行和最左边那列怎么办,最上面那行没有更上的一行,最左边那列没有更左的一列了啊,总不能从地图外走进来吧(笑))我已经预判了你的预判,这就是下一步要做的事情了,初始化。
第三步,初始化dp数组,刚才第二步提到的第一行和第一列就是我们要初始化的,第一行因为不能从上面走下来,所以肯定只能从他的左边走过来,所以第一行全是1,至于dp[0][0]的取值这个下一题会细说。同理,第一列全部赋值为1。
第四步,遍历顺序,根据递推公式,每次都是加正上方的值和左边的值,所以就一层一层从左到右就好了。
第五步,举例推导dp数组。我就不举了。
代码
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
# 创建一个二维列表用于存储唯一路径数
dp = [[0] * n for _ in range(m)]
# 设置第一行和第一列的基本情况
for i in range(m):
dp[i][0] = 1
for j in range(n):
dp[0][j] = 1
# 计算每个单元格的唯一路径数
for i in range(1, m):
for j in range(1, n):
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
# 返回右下角单元格的唯一路径数
return dp[m - 1][n - 1]
63.不同路径 II
思路
和上面的差不多,但有一点小小差异,多了障碍(bushi)
这里第一行和第一列的赋值不能像上一题那样了,比如第一行要是半路来个石头,石头后面那些位置就走不到了啊,彻底无路了。所以应该dp[0][j]应该赋值成dp[0][j-1],同理dp[i][0]应该赋值为dp[i-1][0],这样一旦有个石头挡中间,后面的全就被赋值为0了。(这里就涉及dp[0][0]的取值了,dp[0][0]只能取为1,因为第一行和第一列其余的数的赋值是传递的,这里要赋值为0不就说明起点就是石头了,那还走个毛线啊)
中间的递推公式都上面是一样的,有点不同就是遇到石头那一格dp[i][j]就赋值为0,表示不可到达。
我的代码(搭配我的思路)
from typing import List
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
m = len(obstacleGrid)
n = len(obstacleGrid[0])
dp = [[0 for _ in range(n)] for _ in range(m)]
if obstacleGrid[0][0]==1:
dp[0][0] = 0
else:
dp[0][0] = 1
for i in range(1, n):
if obstacleGrid[0][i] == 1:
dp[0][i] = 0
else:
dp[0][i] = dp[0][i - 1]
for i in range(1,m):
if obstacleGrid[i][0]==1:
dp[i][0] = 0
else:
dp[i][0] = dp[i - 1][0]
for i in range(1, m):
for j in range(1, n):
if obstacleGrid[i][j]==1:
dp[i][j] = 0
else:
dp[i][j] = dp[i][j - 1] + dp[i - 1][j]
return dp[m - 1][n - 1]
Carl的代码
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid):
m = len(obstacleGrid)
n = len(obstacleGrid[0])
if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
return 0
dp = [[0] * n for _ in range(m)]
for i in range(m):
if obstacleGrid[i][0] == 0: # 遇到障碍物时,直接退出循环,后面默认都是0
dp[i][0] = 1
else:
break
for j in range(n):
if obstacleGrid[0][j] == 0:
dp[0][j] = 1
else:
break
for i in range(1, m):
for j in range(1, n):
if obstacleGrid[i][j] == 1:
continue
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[m - 1][n - 1]
好吧,我也是写完题解才看到Carl的,我又自愧不如了(每日崩溃1/2)