代码随想录算法训练营第四十二天 | 62.不同路径、63.不同路径 II

目录

62.不同路径

思路

代码

63.不同路径 II

思路

我的代码(搭配我的思路)

Carl的代码


62.不同路径

本题大家掌握动态规划的方法就可以。 数论方法 有点非主流,很难想到。
思路

        我还是先把上次动态规划的五部曲复制过来吧,详情可以看我第四十一天的文章。

动态规划五部曲

1、明白自己定义的dp数组的含义究竟是什么(很重要,后面写着写着尤其是写到二维就时常会忘记dp[i]到底代表什么了,所以一开始就要不断提醒自己记住含义)

2、推导出递推公式(相当于把大问题分解成重复的小问题,找到递推关系式)

3、初始化dp数组。(这个初始化有时候和第二步有关,所以这是第三步)

4、确定遍历顺序是从前向后还是从后向前)

5、自己举个小例子测试一下,看看输出和设想的是不是相同

        今天是首次出现二维的动态规划,我就细讲一下吧,这周日就要考CSP了真的时间很紧(每日崩溃1/1)

        第一步,确定dp[ i ][ j ] 的含义 ,dp[i][j]表示从左上角走到第i行第j列的路径数量。

        第二步,推导出递推公式,那由题目可知,走到第i行,第j列无非就是从他的上面走下来或者从他的左边走过来嘛,所以递推公式就是dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。(诶,你可能会说那从最上面那行和最左边那列怎么办,最上面那行没有更上的一行,最左边那列没有更左的一列了啊,总不能从地图外走进来吧(笑))我已经预判了你的预判,这就是下一步要做的事情了,初始化。

        第三步,初始化dp数组,刚才第二步提到的第一行和第一列就是我们要初始化的,第一行因为不能从上面走下来,所以肯定只能从他的左边走过来,所以第一行全是1,至于dp[0][0]的取值这个下一题会细说。同理,第一列全部赋值为1

        第四步,遍历顺序,根据递推公式,每次都是加正上方的值和左边的值,所以就一层一层从左到右就好了。

        第五步,举例推导dp数组。我就不举了。

代码
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        # 创建一个二维列表用于存储唯一路径数
        dp = [[0] * n for _ in range(m)]
        
        # 设置第一行和第一列的基本情况
        for i in range(m):
            dp[i][0] = 1
        for j in range(n):
            dp[0][j] = 1
        
        # 计算每个单元格的唯一路径数
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
        
        # 返回右下角单元格的唯一路径数
        return dp[m - 1][n - 1]

63.不同路径 II

思路

        和上面的差不多,但有一点小小差异,多了障碍(bushi)

        这里第一行和第一列的赋值不能像上一题那样了,比如第一行要是半路来个石头,石头后面那些位置就走不到了啊,彻底无路了。所以应该dp[0][j]应该赋值成dp[0][j-1],同理dp[i][0]应该赋值为dp[i-1][0],这样一旦有个石头挡中间,后面的全就被赋值为0了。(这里就涉及dp[0][0]的取值了,dp[0][0]只能取为1,因为第一行和第一列其余的数的赋值是传递的,这里要赋值为0不就说明起点就是石头了,那还走个毛线啊

        中间的递推公式都上面是一样的,有点不同就是遇到石头那一格dp[i][j]就赋值为0表示不可到达

我的代码(搭配我的思路)
from typing import List


class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
        m = len(obstacleGrid)
        n = len(obstacleGrid[0])
        dp = [[0 for _ in range(n)] for _ in range(m)]

        if obstacleGrid[0][0]==1:
            dp[0][0] = 0
        else:
            dp[0][0] = 1

        for i in range(1, n):
            if obstacleGrid[0][i] == 1:
                dp[0][i] = 0
            else:
                dp[0][i] = dp[0][i - 1]

        for i in range(1,m):
            if obstacleGrid[i][0]==1:
                dp[i][0] = 0
            else:
                dp[i][0] = dp[i - 1][0]

        for i in range(1, m):
            for j in range(1, n):
                if obstacleGrid[i][j]==1:
                    dp[i][j] = 0
                else:
                    dp[i][j] = dp[i][j - 1] + dp[i - 1][j]

        return dp[m - 1][n - 1]
Carl的代码
class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid):
        m = len(obstacleGrid)
        n = len(obstacleGrid[0])
        if obstacleGrid[m - 1][n - 1] == 1 or obstacleGrid[0][0] == 1:
            return 0
        dp = [[0] * n for _ in range(m)]
        for i in range(m):
            if obstacleGrid[i][0] == 0:  # 遇到障碍物时,直接退出循环,后面默认都是0
                dp[i][0] = 1
            else:
                break
        for j in range(n):
            if obstacleGrid[0][j] == 0:
                dp[0][j] = 1
            else:
                break
        for i in range(1, m):
            for j in range(1, n):
                if obstacleGrid[i][j] == 1:
                    continue
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
        return dp[m - 1][n - 1]

好吧,我也是写完题解才看到Carl的,我又自愧不如了(每日崩溃1/2) 

代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值