1002

本文介绍了一个使用C++编程解决的棋盘问题,通过递归和动态规划计算在给定边界条件下,马从起点到终点的路径数。作者首先定义了马和卒的移动规则,然后用递归函数dfs求解部分情况,最后利用动态规划优化求解所有可能路径的数量。
摘要由CSDN通过智能技术生成

#include<bits/stdc++.h>
using namespace std;
int x[4]={0,1},y[4]={1,0};//卒走
int m[8]={-2,-2,-1,1,2,2,1,-1},m2[8]={-1,1,2,2,1,-1,-2,-2};//马走
int s[30][30];
 long long f[30][30];
int n=0;
    int a,b,c,d;
    /*递归只能得60分
void dfs(int x1,int y1){
    if(x1<0||x1>a||y1<0||y1>b)return ;
    if(s[x1][y1]==1) return ;
    if(x1==a&&y1==b){
        n++;
        return ;
    }
    //dfs(x1+x[0],y1+y[0]);
    dfs(x1+x[1],y1+y[1]);
    dfs(x1+x[0],y1+y[0]);
}
*/
int main(){
  
    cin>>a>>b>>c>>d;
    a+=2;
    b+=2;
    c+=2;
    d+=2;
    s[c][d]=1;
    //标记马走的点
    for(int i=0;i<=7;i++){
        if(c+m[i]>=0&&c+m[i]<=20&&d+m2[i]>=0&&d+m2[i]<=20)
        s[c+m[i]][d+m2[i]]=1;
    }
   //  dfs(2,2);
   f[2][2]=1;
   //在这个题目对于方格中的一个点你只能从上面或者
   //左边去走能够到达一个点的方法数就是这两点的方法数之和
   for(int i=2;i<=a;i++){
       for(int j=2;j<=b;j++){
           if((i==2&&j==2)||s[i][j]==1)
           continue;
           f[i][j]=f[i-1][j]+f[i][j-1];
       }
   }
   cout<<f[a][b];
   return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值