#include<bits/stdc++.h>
using namespace std;
int x[4]={0,1},y[4]={1,0};//卒走
int m[8]={-2,-2,-1,1,2,2,1,-1},m2[8]={-1,1,2,2,1,-1,-2,-2};//马走
int s[30][30];
long long f[30][30];
int n=0;
int a,b,c,d;
/*递归只能得60分
void dfs(int x1,int y1){
if(x1<0||x1>a||y1<0||y1>b)return ;
if(s[x1][y1]==1) return ;
if(x1==a&&y1==b){
n++;
return ;
}
//dfs(x1+x[0],y1+y[0]);
dfs(x1+x[1],y1+y[1]);
dfs(x1+x[0],y1+y[0]);
}
*/
int main(){
cin>>a>>b>>c>>d;
a+=2;
b+=2;
c+=2;
d+=2;
s[c][d]=1;
//标记马走的点
for(int i=0;i<=7;i++){
if(c+m[i]>=0&&c+m[i]<=20&&d+m2[i]>=0&&d+m2[i]<=20)
s[c+m[i]][d+m2[i]]=1;
}
// dfs(2,2);
f[2][2]=1;
//在这个题目对于方格中的一个点你只能从上面或者
//左边去走能够到达一个点的方法数就是这两点的方法数之和
for(int i=2;i<=a;i++){
for(int j=2;j<=b;j++){
if((i==2&&j==2)||s[i][j]==1)
continue;
f[i][j]=f[i-1][j]+f[i][j-1];
}
}
cout<<f[a][b];
return 0;
}
1002
最新推荐文章于 2024-11-16 13:27:03 发布
本文介绍了一个使用C++编程解决的棋盘问题,通过递归和动态规划计算在给定边界条件下,马从起点到终点的路径数。作者首先定义了马和卒的移动规则,然后用递归函数dfs求解部分情况,最后利用动态规划优化求解所有可能路径的数量。
摘要由CSDN通过智能技术生成