🌞欢迎莅临我的个人主页👈🏻这里是我专注于深度学习领域、用心分享知识精粹与智慧火花的独特角落!🍉
🌈如果大家喜欢文章,欢迎:关注🍷+点赞👍🏻+评论✍🏻+收藏🌟,如有错误敬请指正!🪐
🍓“请不要相信胜利就像山坡上的蒲公英一样唾手可得,但是请相信生活中总有美好值得我们全力以赴,哪怕粉身碎骨!”🌹
目录
学习之前我们先要了解为什么会有优化器这个东西:
在训练过程中,我们首先会计算损失函数,然后使用优化器来更新模型参数。这个过程通常被称为反向传播(Backpropagation),其中优化器根据损失函数的梯度来决定参数的更新方向和大小,通过不断更新以提高模型的性能。反向传播机制可参考:损失函数介绍
注:本部分只涉及优化器的基本使用及相关代码说明,若要深究其原理请自行查阅。
优化器
优化器(Optimizer)是深度学习中用于调整模型参数以最小化损失函数的算法。在训练神经网络时,优化器通过计算梯度并更新参数的方式来不断调整模型,通过多次迭代,不断调整模型参数,使得损失函数逐渐减小,模型可以更快地收敛和拟合训练数据、避免局部最优点、提高模型的泛化能力等。官方文档说明:优化器
这里通过随机梯度下降(Stochastic Gradient Descent,SGD)优化器为例来解释一下优化器的具体操作流程:
- 创建优化器结构,一般只需要传入模型参数及学习速率即可,其中学习速率需适中,过大会使模型训练不稳定,过小训练速度太慢,建议前期设置较大,后期逐渐减小来加强模型训练
- 遍历数据集,将数据集传入神经网络进行处理,随后利用损失函数计算预测与真实间的误差,将误差进行反向传播计算每一个参数对应的梯度,通过优化器对梯度进行相应调整
- 每一次调整后都需要将前一次的梯度清零,防止梯度累计,影响下一次的优化
Example:
optimizer = optim.SGD(model.parameters(), lr=0.01)
for input, target in dataset:
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
实战环节
本部分依旧是以 CIFAR10 数据集为例,经过3次卷积和池化后再线性变换得到大小为10的输出向量,这里为直观的显示优化器对模型参数的调整,我们训练了20轮,同时输出每一轮数据集中的误差总和。
相关代码如下:
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear
from torch.nn.modules.flatten import Flatten
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("../data", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
dataloader = DataLoader(dataset, batch_size=64)
class Mydata(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.conv1 = Conv2d(3, 32, 5, padding=2)
self.maxpool1 = MaxPool2d(2)
self.conv2 = Conv2d(32, 32, 5, padding=2)
self.maxpool2 = MaxPool2d(2)
self.conv3 = Conv2d(32, 64, 5, padding=2)
self.maxpool3 = MaxPool2d(2)
self.flatten = Flatten()
self.linear1 = Linear(64 * 4 * 4, 64)
self.linear2 = Linear(64, 10)
def forward(self, m):
m = self.conv1(m)
m = self.maxpool1(m)
m = self.conv2(m)
m = self.maxpool2(m)
m = self.conv3(m)
m = self.maxpool3(m)
m = self.flatten(m)
m = self.linear1(m)
m = self.linear2(m)
return m
loss = nn.CrossEntropyLoss()
mydata= Mydata()
optim = torch.optim.SGD(tudui.parameters(), lr=0.01)
for epoch in range(20):
running_loss = 0.0
for data in dataloader:
imgs, targets = data
outputs = mydata(imgs)
result_loss = loss(outputs, targets)
optim.zero_grad()
result_loss.backward()
optim.step()
running_loss = running_loss + result_loss
print(running_loss)
控制台输出结果:
从输出结果可以看出,经过优化器的调整后,数据集误差总和在逐步下降,这代表模型对于数据的适应性能越来越强。
总结:以上只是一个最基础的使用优化器来进行调优的过程,在实际应用当中,我们应该依据损失函数选择适合的优化器进行训练,因为不同的优化器在不同的场景下会表现出不同的效果,相应的默认参数也不一致,因此选择合适的优化器可以帮助提高模型的训练速度和性能。