- 博客(60)
- 收藏
- 关注
原创 模式识别编程实践1:身高和/或体重数据进行性别分类
🌞欢迎莅临我的👈🏻这里是我专注于深度学习领域、用心分享知识精粹与智慧火花的独特角落!🍉🪐🍓“请不要相信胜利就像山坡上的蒲公英一样唾手可得,但是请相信生活中总有美好值得我们全力以赴,哪怕粉身碎骨!”🌹。
2024-10-01 18:26:14
1406
原创 基于深度学习的图像去雾研究进展
图像去雾技术是计算机视觉领域中的一个重要研究方向,它旨在通过算法处理,改善因大气散射作用(如雾、霾等)导致的图像质量下降问题。近年来,随着深度学习技术的发展,基于神经网络的去雾算法取得了显著进展,尤其是基于Transformer的去雾算法在多个场景下表现出了良好的性能。因此,本文将探讨近年来图像去雾领域的研究进展,包括不同方法的性能表现,以及评估去雾效果的性能指标。
2024-09-17 20:58:44
6983
2
原创 超分辨率技术之插值算法
超分辨率是计算机视觉领域的重要技术,旨在提高低分辨率图像的质量。它通过复杂算法从低分辨率图像中重构出高分辨率图像,在医疗影像、影视娱乐等领域有广泛应用,为图像质量提升带来新突破。
2024-09-15 21:43:49
1682
原创 一文读懂5种图像加雾算法
首先计算雾化的尺寸大小(这里取输入图像行数和列数种较大值的平方根)和雾化中心,然后计算图像中每个像素点到雾化中心的距离,根据距离计算一个与雾化效果和雾透明度相关的值,img_f * td[..., np.newaxis] + brightness * (1 - td[..., np.newaxis])这里对原始图像进行处理,根据透明度值td和雾霾亮度brightness来混合原始图像和一个与亮度相关的部分,得到有雾效果的图像数据。雾越浓,被散射的光就越多,我们看到的物体就越模糊。
2024-09-14 23:58:46
4221
16
原创 基于 CycleGAN 对抗网络的自定义数据集训练
而判别器则努力提高自己的鉴别能力,不被生成器欺骗。上面这个图是该网络实现的风格迁移,感觉这个网络还是挺有意思的,就想着训练一下自己的数据集看下效果,那下面我们直接进入正题吧。它接收随机噪声作为输入,并通过一系列的神经网络层将其转化为具有特定特征的输出,试图欺骗判别器使其认为生成的数据是真实的。其中,只有 --name 是可改参数,可以自己命名模型的名称,但是修改后一定要与测试时的名称一致,请一定注意这一点。--dataroot 是测试样本,可以自己调整路径,同时注意模型名称是否与训练的一致,不一致请修改。
2024-09-13 20:08:00
1866
5
原创 旋转目标数据集制作:roLabelImg的安装和使用
由于最近一些项目需要标注旋转数据集,在网上找了一些教程,但大多数都显得比较杂乱,因此想把这些重新整理一下,省去一些繁琐的工作。
2024-08-14 12:00:10
3165
2
原创 OpenCV经典案例:01 答题卡识别
随着信息化的发展,计算机阅卷已经成为一种常规操作。在大型考试中,客观题基本不再 需要人工阅卷。本项目旨在开发一个基于OpenCV的高效答题卡识别系统,通过先进的图像处理和模式识别技术,实现对答题卡的快速准确分析。文章所有资源请看文末!
2024-08-05 15:53:18
1597
1
原创 OpenCV基础(2)
在该序列中,处于中心位置的值是“93”,用该值作为新像素值替换原来的像素值 78。一般来说,图像平滑处理是指在一幅图像中若一个像素点与周围像素点的像素值差异较大,则将其值调整为周围邻近像素点像素值的近似值(如均值等),因此图像平滑处理通常也伴随图像模糊操作。卷积核越大,参与均值运算的像素点越多,即当前像素点计算的是周围更多点的像素点的像素值的均值。如果结构元未完全处于前景对象中(可能部分在,也可能完全不在),就将结构元中心点对应的腐蚀结果图像中的像素点处理为背景色(黑色,像素点的 像素值为 0)。
2024-07-04 17:20:59
1208
原创 软件技术基础实验
软件技术基础实验分为4个内容:堆栈操作、单链表操作、二叉树操作、查找与排序。虽然书上都有源码,但是要一个一个敲出来真的是很麻烦的事呀,所以为了便于大家理解和节约时间,这里我会给出全部实验的源码以及对应释义。:本实验全部使用C语言进行编写。
2024-06-06 13:48:15
1229
原创 C++课程设计:学校人员信息管理系统(可视化界面)
本来想直接用上一届师兄的课设-----,但看到题目要求说有可视化界面加大分,但是师兄的并未包含这个内容,所以就自己做一个吧,毕竟我也想要把分数搞高一点呀,哈哈!但是在这里还是把师兄的课设放在这里供大家参考吧!
2024-05-26 14:38:41
2128
原创 目标检测网络:YOLOv7 模型复现
网络中使用创新的过渡模块(MP)来进行下采样,在卷积神经网络中,常见的用于下采样的过渡模块是一个卷积核大小为3x3、步长为2x2的卷积或者一个步长为2x2的最大池化。上分支是一个步长为2x2的最大池化+一个1x1卷积,下分支是一个1x1卷积+一个卷积核大小为3x3、步长为2x2的卷积,两个分支的结果在输出时会进行堆叠。在体系结构方面,E-ELAN只改变了计算模块中的结构,而过渡层的结构则完全不变。E-ELAN是基于ELAN的扩展,在大规模ELAN中,无论梯度路径长度和计算模块数量如何,都达到了稳定的状态。
2024-05-20 05:00:00
1881
原创 目标检测网络:YOLOv5 模型复现
这种方法使得图像的宽度和高度减半,实现二倍下采样,同时保留空间信息。随后,卷积操作进一步提取特征,生成具有更高通道数的特征图,这些特征图在空间分辨率上是原始图像的一半,但在通道维度上是原始图像的四倍。以YOLOv5s为例,原始的640× 640×3的图像输入Focus结构,采用切片操作,先变成320× 320×12的特征图,再经过一次卷积操作,最终变成320 ×320× 32的特征图。原始缩放尺寸是416*416,都除以原始图像的尺寸后,可以得到0.52,和0.69两个缩放系数,选择小的缩放系数。
2024-05-19 13:17:02
1314
原创 目标检测网络:YOLOv4 模型复现
然后计算C \ (A ∪ B) 的面积与C的面积的比值,注:C \ (A ∪ B) 的面积为C的面积减去A∪B的面积,再用A、B的IoU值减去这个比值得到GIoU。图像是一个2D结构,像素或者特征点之间在空间上存在依赖关系,这样普通的DropOut在屏蔽语义就不够有效,但是DropBlock这样屏蔽连续区域块就能有效移除某些语义信息,比如狗的头,从而起到有效的正则化作用。,比如13×13的输入特征图,使用5×5大小的池化核池化,padding=2,因此池化后的特征图仍然是13×13大小。
2024-05-19 01:50:07
1420
原创 目标检测网络:YOLOv3 模型复现
(13,13,75)、(26,26,75)、(52,52,75) 特征层:每个尺度的特征图都会通过一个 1x1 卷积层来预测边界框的数量、每个边界框的类别概率、目标的置信度等。(26,26,512) 特征层:将上采样后的特征图与 Darknet-53 中原有的 (26,26,512) 特征层拼接,形成 (26,26,1024) 的特征图。简单来说,YOLOv3就是把一个图像划分成不同的网格,每个网格点负责一个区域的检测,只要物体的中心点落在这个区域,这个物体就有这个网格点来确定。锚点是每个网格的左上角)
2024-05-17 02:40:55
1100
原创 Python基础编程
要理解类的含义,我们必须先了解内置的__init__()函数。所有类都有一个名为 __init__()的函数,它始终在启动类时执行。对象也可以包含方法。self 参数是对类的当前实例的引用,用于访问属于该类的变量。它不必被命名为 self,你可以随意调用它,但它必须是类中任意函数的首个参数。它的意思是:当该模块被直接执行时,该条件成立,执行其下的代码;当该模块被导入时,该条件不成立,其下的代码不会被执行。函数定义不能为空,但是如果您出于某种原因写了无内容的函数定义,请使用 pass 语句来避免错误。
2024-05-05 22:57:29
1083
5
原创 医学图像处理:nii格式转换(3D切片为2D)
由于目前我所训练的图像数据均为2D,因此我采用了纵向切片的方法处理,但在此之前需要查看图像数据是否有损坏。由于目前我所接触训练数据都是2D图像,而生物医学工程竞赛中提供的数据集大部分都是这种 nii 格式的文件,因此在遇到这种 nii 文件时我都会先将其转换为PNG格式的图像在进一步处理。这个只是很简单的查看一个 .nii 文件是否能够正常显示,ITK-SNAP软件对于3D图像的处理很有帮助,但我对3D图像数据的处理方式并不熟悉,因此并未深入探讨,如果有想要深入了解该软件的使用方法,请移步。
2024-05-05 19:10:03
4417
18
原创 模拟电子技术实验(实验十一)
16. 上半周交流信号限幅测试电路时,当交流信号为4sinωtV,频率50Hz时,串 接电阻为1K,保证限幅正常时,二极管负极接的直流电压最大值是多少伏?6. 本实验仿真用IV仪表二极管反向特性测试演示中,Parameters范围最佳是多 少?4. 本实验仿真用IV仪表二极管正向特性测试演示中,Increment范围最佳是多 少?5. 本实验仿真用IV仪表二极管正向特性测试演示中,Increment最佳是多少?7. 本实验仿真用IV仪表二极管反向特性测试演示中,Increment最佳是多少?
2024-04-24 06:00:00
2233
1
原创 模拟电子技术实验(十)
4.若想保证集成稳压器工作在线性区,对于78**系列和79**系列,UI和Uo的 关系分别为?3.对于78**系列,为了使稳压电源的输出电压Uo=12 V,则其输入电压的最 小值UImin应等于多少?B. 集成稳压器输出电压 ,集成稳压器输出电压交流成分,集成稳压电路输 入电压。A. 工频电源电压 ,集成稳压器输出电压 输出电压交流成分。D. 工频电源电压,输出电压交流成分,输入输出之间的电压。C. 输出电压交流成分 稳压电路输入电压,工频电源电压。10.在扩压仿真电路中,经过扩压电路,电压提升了多少?
2024-04-23 14:25:33
973
原创 模拟电子技术实验(九)
B. 设计性实验操作是通过测量电路系统参数验证元件参数是否正确,验证 性实验是通过测量系统参数验证预测计算系统参数是否正确。C. 设计性实验是根据系统参数 、电路原理和验证积累确定符合系统参数的 电路结构和元件参数。D. 设计性实验是根据系统参数和验证积累确定符合系统参数的电路结构和 元件参数。C. 设计性和验证性实验预习也是根据一部分元件参数计算另一部分元件参 数。A. 设计性实验是根据电路结构和元件参数测试验证系统参数。B. 设计性实验是根据系统参数确定电路结构和元件参数。
2024-04-23 06:00:00
966
原创 模拟电子技术实验(八)
8.在简单方波发生器实践操作演示中,在观察UO与UC的波形时,使用的电位 器R 的是多大的?9. 在三角波和方波发生器实验演示中,示波器的1通道和2通道分别显示的是什么 信号?6. 过零比较器的仿真实验中,测量Ui悬空时,UO值的大小约为多少?3.在简单方波发生器实验电路中,调节下列哪个参数可以改变振荡频率?5. 在过零比较器的技术仿真演示中,最先添加的仪器、仪表是什么?7.视频15分钟时,所讲内容为过零比较器的哪种操作?1.本次实验的目的包括验证的工作原理?B. 三角波、方波发生器。
2024-04-22 08:38:44
929
原创 模拟电子技术实验(七)
4. 本实验视频6分29秒的电路图正负电源分别接集成运放第几脚?10. 本实验视频小节时一共归纳出几种仿真,分别 称为什么名字?B. 函数发生器、示波器、万用表、虚拟实验箱、虚拟运放实验板。B. 工程仿真,自己的连线不能与虚拟实验板上原有线的头部相连。5.本实验视频6分29秒的电路图1、5脚的功能是什么?8.本实验视频17分35秒~23分30秒讲的什么电路?9. 本实验视频34分开始讲的什么仿真,连线注意什么?D. 输入信号不变而输出信号按一定规律变化。B. 输出信号随输入信号按一定比列变化。
2024-04-22 06:00:00
970
原创 分类神经网络3:DenseNet模型复现
这是由于卷积层的输入包含了它前面所有层的输出特征,它们来自不同层的输出,因此数值分布差异比较大,所以它们在输入到下一个卷积层时,必须先经过BN层将其数值进行标准化,然后再进行卷积操作。:用于将不同DenseBlock之间进行连接,整合上一个DenseBlock获得的特征,并且缩小上一个DenseBlock的宽高,达到下采样的效果,实质上起到。互相连接所有的层,即每一层的输入都来自于它前面所有层的特征图,每一层的输出均会直接连接到它后面所有层的输入,这可以实现。),二者均是通过建立前面层与后面层之间的。
2024-04-21 22:13:03
1268
原创 分类神经网络2:ResNet模型复现
在构建神经网络时,首先采用了步长为2的卷积层进行图像尺寸缩减,即下采样操作,紧接着是多个残差结构,在网络架构的末端,引入了一个全局平均池化层,用于整合特征信息,最后是一个包含1000个类别的全连接层,并在该层后应用了softmax激活函数以进行多分类任务。:由2个3x3卷积层堆叠而成,当输入和输出维度一致时,可以直接将输入加到输出上,这相当于简单执行了同等映射,不会产生额外的参数,也不会增加计算复杂度(随着网络深度的加深,这种残差模块在实践中并不十分有效);希望对大家能够有所帮助呀!ResNet网络通过。
2024-04-21 21:50:47
805
原创 分类神经网络1:VGGNet模型复现
通常来说,增加网络的深度可以增加模型的表示能力,使其能够学习到更复杂的特征和模式,从而在某些任务上取得更好的性能。然而,随着网络深度的增加,模型的参数数量也会增加,导致模型的复杂度增加,训练和推理的计算成本也会增加,同时可能会增加过拟合的风险。其负责捕获数据的有用信息,一般是通过堆叠多个卷积层和池化层来实现的,这些层有助于检测图像中的边缘、纹理和特征。这只是一个网络架构部分实现代码,其中 cfg 列表是 VGG 卷积和池化后的通道数,大家可以结合 VGG 的配置信息图一起对比理解。希望对大家有所帮助呀!
2024-04-21 19:36:25
1464
原创 labelme、labelimg的安装及使用(含格式转换:json转png)
labelme和labelimg都是图像标注工具,它们在机器学习和计算机视觉领域的数据准备阶段扮演着重要的角色。这些工具的主要目的是帮助用户为图像数据集创建标签,这些标签随后可以用于训练机器学习模型,以识别和理解图像中的对象、场景和活动等。labelmelabelme是一个开源的图像标注工具,它支持多种类型的标注,包括矩形框、多边形、点、线和圆形等。它提供了一个用户友好的界面,允许用户通过简单的点击和拖动来创建标注。
2024-04-02 18:05:27
3989
原创 Pycharm环境配置完整教程
本文主要介绍python解释器安装、Pycharm环境配置以及运行第一个程序的零基础的教程,即使是python小白也能正确配置相应的python学习环境哦!
2024-04-02 12:00:19
28362
原创 基于Tampermonkey 实现自动答题和视频播放
请注意:该脚本的自动答题有一定缺陷,由于是AI搜索题目,故有少量题目无法保证准确性,属于正常现象。我的建议是只看视频,题目的话自己做,正确率提高了,最后得分不也就高了嘛!因此就需要关闭自动答题功能,下面是关闭方式,当然,如果你不介意最后的得分的话,下面的就可以直接略过啦!下载完成会在浏览器拓展中自动生成一个插件,此时点击管理拓展,确保插件已经启用,至此安装完成。点击篡改猴 - > 添加新脚本 - > 已安装脚本 - > 启用。点击超链接进行安装,该脚本可实现个网课平台视频自动播放和答题。
2024-03-30 21:11:21
19315
2
原创 模拟电子技术实验(六)
9.本实验视频中仿真测量测量差模输入电压时,运放的输入、输出电压值是多 少?是交流量还是直流量?D. 1 3 . 2 1 m V 和2 7 9 . 0 5 8。B. 输入电压u i ≠ 0时的输出电压u o折算到输入端的电压。A. 2 . 2 1 m V 和1 7 9 . 0 5 8。B. 2 . 2 1 m V 和1 7 9 . 0 5 8。C. 3 . 2 1 m V 和2 7 9 . 0 5 8。C. .输入电压u i ≠ 0时的输出电压u o。A. 输入电压u i=0时的输出电压u o。
2024-03-24 21:49:27
789
原创 模拟电子技术实验(五)
见指导书P2 1 5附图3 - 6 - 1 - 1 9中, 正数1,2,3,4,6,1 3行所 述。见指导书P2 1 5附图3 - 6 - 1 - 1 9中,正数1,2,3,4,6,1 2行所 述。函数信号发生器,双踪示波器,瓦特计,失真度分析仪,数字万用 表,波特图仪(幅频特性测试仪)函数信号发生器,双踪示波器,瓦特计,失真度分析仪,数字万用 表,伏安特性测试仪。B. 找到导线接错端,用鼠标箭头触碰,出现╳时,按住鼠标左键拖拽即 可。A. 5种,红:正电压;绿:输入,橙:输出。D. 5种,红:正电压;
2024-03-24 21:39:44
877
2
原创 数字电子技术实验(十)
③在出 现的对话框里的Co m p o n e n t栏里输入7 4 LS8 6,再单击右上角Se a r c h按 钮。④在出现的对话框的Co m p o n e n t栏中7 4 LS8 6D或7 4 L 8 6N。⑤在 Co m p o n e n t栏下找到7 4 LS8 6单击即可。13.使用diamond集成开发环境实现4位串行累加器时,设计提示中wire e,f,s,q一句含义是: A. 定义e , f , s , q是输入端。C. 定义e , f , s , q数据类型是寄存器型。
2024-03-19 17:00:00
1218
原创 数字电子技术实验(九)
③在出 现的对话框里的Co m p o n e n t栏里输入7 4 LS1 7 5,再单击右上角Se a r c h 按钮。④在出现的对话框的Co m p o n e n t栏中7 4 LS1 7 5D或7 4 LS1 7 5N。④在出现对话框里找到7 4 LS单击。⑤在 Co m p o n e n t栏下找到7 4 LS1 7 5单击即可。A. 1 4分4 8秒~1 4分5 5秒之间出现不能复位的情况。
2024-03-19 05:00:00
1096
原创 数字电子技术实验(八)
7. 本实验视频中74LS161与74LS194的时钟频率一样吗?10.本视频原理仿真时,用了一个4通道示波器,A、B、C三个通道分别看什 么波形?C. A看时钟源,B通道看1 0分频,C 看7 4 LS1 6 1时钟。A. A看时钟源,B通道看4分频,C 看7 4 LS1 6 1时钟。B. A看时钟源,B通道看8分频,C 看7 4 LS1 6 1时钟。D. A看时钟源,B通道看2分频,C 看7 4 LS1 6 1时钟。A. 相同,同一个时钟源。C. 相同,不同时钟源。D. 不同,不同时钟源。
2024-03-18 15:00:00
734
原创 数字电子技术实验(七)
A. 5V直流电源,1 0 0K电阻,SPDT开关,GROUND元件。C. 5V直流电源,RESISTOR,SPDT开关,GROUND元件。B. 5V直流电源,1 0K电阻,SPST开关,GROUND元件。D. 5V直流电源,1 0K电阻,SPST开关,DGND元件。10. 本视频仿真时,集成芯片74LS30的功能是什么?A. GROUND元件,3 0 0K电阻,LED红色。B. GROUND元件,3 0 0欧电阻,LED红色。C. GROUND元件,3 0K电阻,LED红色。
2024-03-18 07:15:00
720
原创 数字电子技术实验(六)
④在点击右上角OK。D. 数码管字符在右边(仿真),数码管接5V电源(实际操作),将5V电源 分别接数码管的4个引脚,点击运行按钮,看是否显示为8,4,2,1。C. 数码管字符在右边(仿真),数码管接5V电源(实际操作),将5V电 源,接数码管右边第3个引脚,点击运行按钮,看是否显示为4。B. 数码管字符在右边(仿真),数码管接5V电源(实际操作),将5V电 源接数码管右边第1个引脚,点击运行按钮,看是否显示为1。A. 用2只数码管显示6 0秒计数,一个数码管显示是十进制计数,另一个数 码管显示是五进制。
2024-03-17 19:45:00
816
原创 数字电子技术实验(五)
④在出现对话框里找到 7 4 LS单击。⑤在Co m p o n e n t栏下找到7 4 LS7 4单击⑥在点击右上角 OK。③在 Co m p o n e n t栏下找到7 4 LS7 4单击。6.基本RS触发器(与非门组成)仿真时,当 R、S 端口从0、0到1、1后, R、S 端口接的LED出现闪烁,说明什么问题?C. 说明触发器R、S 端口从0、0到1、1后处于置0状态。D. 说明触发器R、S 端口从0、0到1、1后处于置1状态。B. 说明触发器R、S 端口从0、0到1、1后为不定状态。
2024-03-17 06:30:00
1094
原创 数字电子技术实验(四)
10.本实验消除冒险竞争仿真电路图中U2A,U2B的作用分别是什么?7.本实验仿真时,冒险竞争电路图中是哪个与非门引起了冒险竞争现象。6.本实验冒险竞争观察仿真电路图中四个与非门哪里不一样?4.本实验视频介绍消除竞争冒险的方法有几种?1.组合逻辑电路中产生竞争冒险的原因是?D. U2A提供低电平,U2B提供高电平。A. U2A提供高电平,2B也是延迟。B. U2A延迟,U2B提供低电平。C. U2A延迟,U2B提供高电平。B. 电路元件器件引脚号是一样的。A. 集成电路型号是一样的。
2024-03-16 23:00:00
748
原创 数字电子技术实验(三)
C. 6个5V直流电源,RESISTOR,SPDT开关,GROUND元件,3 0 0K电 阻,LED红色。5V直流电源,1 0 0K电阻,SPDT开关,GROUND元件,3 0K电 阻,LED红色。5V直流电源,1 0K电阻,SPST开关,GROUND元件,3 0 0电 阻,LED红色。5V直流电源,1 0K电阻,SPST开关,DGND元件,3 0 0电阻, LED红色。B. Y 外接非门,3 3 0欧限流电阻,LED发光二极管。C. Y 接与非门,3 3 0欧限流电阻,LED发光二极管。
2024-03-16 18:42:06
705
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人