m个n维向量组中m,n的含义与空间的关系

  1. 向量的维度与空间的关系
    一个向量的维度由其分量个数决定,例如 ( n ) 个分量的向量属于 Rn空间 。

  2. 向量组张成空间的维度

    • 当向量组有 ( m ) 个线性无关的 ( n ) 维向量时:
      • 若 ( m < n )
        这些向量张成的是 Rn中的 ( m ) 维子空间(例如,三个线性无关的四维向量张成四维空间中的三维子空间)。
      • 若 ( m = n )
        这些向量构成Rn的一组基,张成整个 ( n ) 维空间 。
      • 若 ( m > n )
        ( n ) 维空间中任意 ( m > n ) 个向量必然线性相关,因此无法张成超过 ( n ) 维的空间。此时,张成的空间仍为 ( n ) 维,但需注意向量组本身已线性相关。

总结:

  • 当 ( m < n ):线性无关向量组张成 ( m ) 维子空间。
  • 当 ( m = n ):张成整个 ( n ) 维空间。
  • 当 ( m > n ):向量组线性相关,张成空间维度仍为 ( n ) 维(需依赖部分向量)。

例如,在 Rn中:

  • 2个线性无关向量张成平面(二维子空间)。
  • 3个线性无关向量张成整个三维空间。
  • 4个向量必然线性相关,张成空间仍为三维,但需通过其中3个线性无关向量实现 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值