可导一定连续

可导一定连续的证明与理解

  1. ​定理陈述
    可导必连续:若函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处可导,则 f ( x ) f(x) f(x) x 0 x_0 x0 处连续。

  2. ​证明过程
    ​方法一:通过导数定义与极限运算

  3. ​导数定义:
    f ( x ) f(x) f(x) x 0 x_0 x0 处可导,则极限
    lim ⁡ Δ x → 0 Δ y Δ x = f ′ ( x 0 ) \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0) limΔx0ΔxΔy=f(x0)
    存在(有限)。

  4. ​构造表达式:
    由极限与无穷小的关系,可写为:
    Δ y Δ x = f ′ ( x 0 ) + α ( α  是当  Δ x → 0  时的无穷小 ) \frac{\Delta y}{\Delta x} = f'(x_0) + \alpha \quad (\alpha \text{ 是当 } \Delta x \to 0 \text{ 时的无穷小}) ΔxΔy=f(x0)+α(α 是当 Δx0 时的无穷小)
    两边同乘 Δ x \Delta x Δx,得:
    Δ y = f ′ ( x 0 ) Δ x + α Δ x \Delta y = f'(x_0)\Delta x + \alpha \Delta x Δy=f(x0)Δx+αΔx

  5. ​极限分析:
    Δ x → 0 \Delta x \to 0 Δx0 时,
    lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 ( f ′ ( x 0 ) Δ x + α Δ x ) = 0 \lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left( f'(x_0)\Delta x + \alpha \Delta x \right) = 0 limΔx0Δy=limΔx0(f(x0)Δx+αΔx)=0
    lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0} f(x) = f(x_0) limxx0f(x)=f(x0),满足连续的定义。

​方法二:利用极限的乘法法则

  1. ​拆分极限:
    lim ⁡ x → x 0 [ f ( x ) − f ( x 0 ) ] = lim ⁡ x → x 0 ( f ( x ) − f ( x 0 ) x − x 0 ⋅ ( x − x 0 ) ) \lim_{x \to x_0} [f(x) - f(x_0)] = \lim_{x \to x_0} \left( \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0) \right) limxx0[f(x)f(x0)]=limxx0(xx0f(x)f(x0)(xx0))

  2. ​乘积的极限:
    根据导数定义和 lim ⁡ x → x 0 ( x − x 0 ) = 0 \lim_{x \to x_0} (x - x_0) = 0 limxx0(xx0)=0,得:
    lim ⁡ x → x 0 [ f ( x ) − f ( x 0 ) ] = f ′ ( x 0 ) ⋅ 0 = 0 \lim_{x \to x_0} [f(x) - f(x_0)] = f'(x_0) \cdot 0 = 0 limxx0[f(x)f(x0)]=f(x0)0=0
    从而 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0} f(x) = f(x_0) limxx0f(x)=f(x0),证毕。

  3. ​反例与补充
    ​连续不一定可导
    ● ​例子 1:绝对值函数 f ( x ) = ∣ x ∣ f(x) = |x| f(x)=x x = 0 x=0 x=0 处连续但不可导(左、右导数不等)。
    ● ​例子 2:魏尔斯特拉斯函数 f ( x ) = ∑ n = 0 ∞ a n cos ⁡ ( b n π x ) f(x) = \sum_{n=0}^\infty a^n \cos(b^n \pi x) f(x)=n=0ancos(bnπx) 0 < a < 1 0 < a < 1 0<a<1 b b b 为奇数且 a b > 1 + 3 π 2 ab > 1 + \frac{3\pi}{2} ab>1+23π)处处连续但处处不可导3。

  4. ​关键点总结

  5. ​逻辑关系:
    ○ 可导    ⟹    \implies 连续(因导数存在要求极限 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0} f(x) = f(x_0) limxx0f(x)=f(x0))。
    ○ 连续 ⇏ \nRightarrow 可导(如尖点、振荡等情形破坏可导性)。

  6. ​几何意义:
    ○ 可导意味着函数在局部无突变(如尖角、断裂),曲线光滑。
    ○ 高阶可导性(如二阶可导)对应更高程度的平滑性。

  7. ​扩展思考
    ● ​可微与可导等价:在单变量函数中,可导与可微是等价概念。
    ● ​导数的本质:描述函数在某点的瞬时变化率,需局部线性近似(即连续)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值