可导一定连续的证明与理解
-
定理陈述
可导必连续:若函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处可导,则 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处连续。 -
证明过程
方法一:通过导数定义与极限运算 -
导数定义:
设 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处可导,则极限
lim Δ x → 0 Δ y Δ x = f ′ ( x 0 ) \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0) limΔx→0ΔxΔy=f′(x0)
存在(有限)。 -
构造表达式:
由极限与无穷小的关系,可写为:
Δ y Δ x = f ′ ( x 0 ) + α ( α 是当 Δ x → 0 时的无穷小 ) \frac{\Delta y}{\Delta x} = f'(x_0) + \alpha \quad (\alpha \text{ 是当 } \Delta x \to 0 \text{ 时的无穷小}) ΔxΔy=f′(x0)+α(α 是当 Δx→0 时的无穷小)
两边同乘 Δ x \Delta x Δx,得:
Δ y = f ′ ( x 0 ) Δ x + α Δ x \Delta y = f'(x_0)\Delta x + \alpha \Delta x Δy=f′(x0)Δx+αΔx -
极限分析:
当 Δ x → 0 \Delta x \to 0 Δx→0 时,
lim Δ x → 0 Δ y = lim Δ x → 0 ( f ′ ( x 0 ) Δ x + α Δ x ) = 0 \lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left( f'(x_0)\Delta x + \alpha \Delta x \right) = 0 limΔx→0Δy=limΔx→0(f′(x0)Δx+αΔx)=0
即 lim x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0} f(x) = f(x_0) limx→x0f(x)=f(x0),满足连续的定义。
方法二:利用极限的乘法法则
-
拆分极限:
lim x → x 0 [ f ( x ) − f ( x 0 ) ] = lim x → x 0 ( f ( x ) − f ( x 0 ) x − x 0 ⋅ ( x − x 0 ) ) \lim_{x \to x_0} [f(x) - f(x_0)] = \lim_{x \to x_0} \left( \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0) \right) limx→x0[f(x)−f(x0)]=limx→x0(x−x0f(x)−f(x0)⋅(x−x0)) -
乘积的极限:
根据导数定义和 lim x → x 0 ( x − x 0 ) = 0 \lim_{x \to x_0} (x - x_0) = 0 limx→x0(x−x0)=0,得:
lim x → x 0 [ f ( x ) − f ( x 0 ) ] = f ′ ( x 0 ) ⋅ 0 = 0 \lim_{x \to x_0} [f(x) - f(x_0)] = f'(x_0) \cdot 0 = 0 limx→x0[f(x)−f(x0)]=f′(x0)⋅0=0
从而 lim x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0} f(x) = f(x_0) limx→x0f(x)=f(x0),证毕。 -
反例与补充
连续不一定可导
● 例子 1:绝对值函数 f ( x ) = ∣ x ∣ f(x) = |x| f(x)=∣x∣ 在 x = 0 x=0 x=0 处连续但不可导(左、右导数不等)。
● 例子 2:魏尔斯特拉斯函数 f ( x ) = ∑ n = 0 ∞ a n cos ( b n π x ) f(x) = \sum_{n=0}^\infty a^n \cos(b^n \pi x) f(x)=∑n=0∞ancos(bnπx)( 0 < a < 1 0 < a < 1 0<a<1, b b b 为奇数且 a b > 1 + 3 π 2 ab > 1 + \frac{3\pi}{2} ab>1+23π)处处连续但处处不可导3。 -
关键点总结
-
逻辑关系:
○ 可导 ⟹ \implies ⟹ 连续(因导数存在要求极限 lim x → x 0 f ( x ) = f ( x 0 ) \lim_{x \to x_0} f(x) = f(x_0) limx→x0f(x)=f(x0))。
○ 连续 ⇏ \nRightarrow ⇏ 可导(如尖点、振荡等情形破坏可导性)。 -
几何意义:
○ 可导意味着函数在局部无突变(如尖角、断裂),曲线光滑。
○ 高阶可导性(如二阶可导)对应更高程度的平滑性。 -
扩展思考
● 可微与可导等价:在单变量函数中,可导与可微是等价概念。
● 导数的本质:描述函数在某点的瞬时变化率,需局部线性近似(即连续)。