- 博客(13)
- 收藏
- 关注
原创 清华大学时序算法模型Timer部署训练预测
首先,时序算法模型在市面上的分类如下图所示,transformer架构在其中的作用非常好,清华大学基于transformer创建了时间序列的模型以及大模型,不需要重新训练即可在多个领域获得很好的效果,基于先前数据推理出预测数据,再根据预测数据进行下一个预测数据的推理。同时timer可以对缺失数据值和异常数据值进行检测,也需要自己编写整套项目,这篇将编写关于预测算法的部署推理项目构建。
2025-11-14 10:45:43
599
原创 Windows系统安装conda
解析:如果勾选,当你在命令行中输入 python时,系统会直接调用 Miniconda 环境中的 Python。对于大多数用户,特别是初学者,建议勾选此项,可以避免很多环境混乱的问题。如果你电脑上已有其他 Python 版本并希望保留其为首选,则不勾选。Register Miniconda3 as the system Python 3.13. 将 Miniconda3 注册为系统的默认 Python 3.13。可以勾选,以后如果需要安装其他包,会重新下载。安装,适合高级用户和磁盘空间紧张的用户。
2025-11-12 09:30:41
1000
原创 变化建筑物半自动标注
摘要:本文介绍了在Label Studio中搭建违建变化分析模型后端的完整流程。首先安装必要的环境(label-studio-ml、torch等),然后修改默认的_wsgi.py文件以支持自定义模型CDModelBackend。该模型基于PyTorch框架,实现了双时相图片输入处理、变化检测推理、掩码转换多边形等功能。文中详细说明了模型初始化参数、预处理步骤以及预测流程,并强调需要GPU支持。最后介绍了Label Studio前端配置方法,包括项目创建、模型服务URL设置及标注界面定义,实现了双时相半自动标
2025-11-10 09:43:41
384
原创 一些训练好的AI模型效果测试
本文介绍了多个遥感影像和无人机模型的应用情况。建筑物变化分析模型(pth)支持双时期影像输入,精度0.6;烟火检测(onnx)精度达0.8;垃圾和罂粟检测精度均为0.5。船只和松材线虫检测需预处理tif,精度分别为0.8和0.6。飞机检测精度0.8。行人和人群检测支持视频输入,精度均为0.8,但不支持shp输出。各模型均提供Python调用接口,支持文件夹和单张图片输入(部分支持视频),并给出了对应的命令行调用示例。
2025-10-24 09:54:25
360
原创 基于labelstudio的AI半自动化标注
LabelStudio是一款支持半自动标注的开源工具,具有本地部署、多用户协作等特点。其核心优势在于:1)支持自定义AI模型接口实现自动标注(需GPU及模型开发);2)提供手动标注清洗功能;3)支持检测框、分割等多种标注格式。但存在数据集规模限制、Windows部署复杂等缺点。技术实现上,通过conda创建虚拟环境安装,使用YOLO模型进行自动标注开发,关键步骤包括:模型后端服务搭建、标签配置、预测结果转换等。整套流程需注意json标注文件的准确性,最终可通过export导出多种格式的标注结果。
2025-08-28 10:34:46
1820
原创 windows环境部署triton搭建算法库
本文介绍如何利用Triton框架实现AI模型的一站式部署与管理。首先详解Windows系统下Docker的环境配置,包括系统版本要求、安装步骤和常见问题解决方法。然后重点讲解Triton服务端的搭建过程,包括镜像拉取、容器创建、GPU配置以及模型文件规范存放。文章还提供了详细的模型配置文件解析,涵盖模型名称、推理平台、批处理大小等关键参数说明。最后介绍客户端环境的搭建和调用方法,通过HTTP端口实现模型推理服务。该方案能有效解决企业AI模型分散管理的问题,实现统一部署和便捷调用。
2025-08-07 17:05:49
2083
原创 ubuntu系统安装驱动、cuda、cudunn
在Ubuntu系统中配置GPU加速AI训练环境需安装三个关键组件:NVIDIA显卡驱动、CUDA Toolkit和cuDNN。显卡驱动直接控制硬件,CUDA提供GPU编程框架,cuDNN则是深度学习的加速库。。验证安装后,系统即可支持TensorFlow/PyTorch等框架的GPU加速。注意组件版本需兼容,推荐使用专有驱动以获得最佳性能。
2025-07-31 10:53:52
1734
原创 两时相影像建筑物变化分析STANet模型推理
本文展示了STANet网络在不加入噪声数据情况下的推理效果。训练采用LEVIR-CDF0模型,参数包括学习率0.001、batch_size 8、256×256图像尺寸等,通过旋转裁剪增强数据。模型在3000组遥感影像数据上训练1周,F1分数达0.67,推理时对小目标建筑物变化识别精度达0.9,召回率0.7。文章提供了完整的训练代码和推理流程,并预告后续将进行加入噪声数据的对比实验。需要技术支持可联系QQ1901935655。
2025-07-21 10:05:54
503
原创 STANet两时相建筑物变化分析数据集+AI训练
本文介绍了使用STANet网络进行建筑物变化分析的训练过程。作者准备了包含4481组数据的训练集,其中包含2686对变化影像和1000对未变化影像,所有图像均统一为1024*1024尺寸的png格式。文章详细说明了数据集的组织结构(A、B、label文件夹)和训练步骤,包括修改base_options.py中的路径设置和运行train.py命令进行训练。训练模型保存在checkpoints文件夹中,作者提示源代码可能需要调试,并提供联系方式获取调试好的代码。
2025-07-08 14:45:38
482
原创 windows系统建筑物变化分析STANet训练推理保姆级教程
STANet算法训练教程摘要:本文提供STANet算法训练的完整环境配置指南。首先需检查显卡驱动并安装适配的CUDA和cuDNN(版本需匹配显卡驱动),配置系统环境变量。然后安装Miniconda创建Python3.10虚拟环境,安装对应CUDA版本的PyTorch GPU版本。最后下载STANet源码(需自行调整)和LEVIR-CD公开数据集。教程包含详细截图和步骤说明,涵盖驱动检查、CUDA安装、conda环境搭建等关键环节,适合新手快速搭建变化分析模型的训练环境。遇到问题可联系作者获取技术支持。
2025-06-30 16:39:05
843
原创 根据已有的url的excel文件自动下载影像
实现过程:此处提供了两种方法,一种是一张一张下载,速度比较慢,另一种是运用python协程下载(协程方法还没有完全弄清楚,再给自己写一篇文章吧)excel文件包含的信息:此处excel文件里有每个项目的文件名称,每张照片的url接口信息和用作照片名字的id。开发需求:需要按照文件的名称创建新的文件,将对应的照片下载到对应的文件中。
2023-02-04 11:38:49
531
原创 python不依赖第三方库进行平面坐标和球面坐标的转换
此篇文章借鉴了非常多的资料,代码是借用其他优秀作者的代码,但时间过去太久忘记了代码出处,此文章仅用作自己学习,如有侵权请联系我删除。开发需求:前端无法应用python复杂库,将坐标转换用数学函数进行编写。WGS84球面坐标转UTM平面坐标的代码。UTM平面坐标转WGS84坐标代码。
2023-02-04 10:23:30
840
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅