💖🔥作者主页:毕设木哥
精彩专栏推荐订阅:在 下方专栏👇🏻👇🏻👇🏻👇🏻实战项目
文章目录
一、货运物流数据可视化分析-项目介绍
近年来,随着电子商务和物流行业的快速发展,货运物流数据呈现出爆炸式增长。传统的物流数据管理和分析方法已无法高效处理如此庞大的数据量,导致数据冗余、信息滞后等问题。这些问题不仅限制了物流企业的运营效率,也在一定程度上影响了整体的决策过程。因此,如何利用大数据技术对海量货运物流数据进行高效处理和分析,成为了一个亟待解决的关键问题。为了应对这一挑战,拟设计一套基于Python大数据技术的货运物流数据可视化分析系统。
本课题通过使用Scrapy爬虫技术获取货运物流相关数据,并结合Spark和Hadoop对数据进行清洗、处理与分析,解决了传统方法在大数据处理上的不足。系统采用Django框架进行Web网站开发,实现了对货运物流数据的在线大屏可视化展示。管理员可以通过该系统进行数据管理和监控,用户则能够便捷地查看货运物流数据的分析结果,帮助相关人员对物流趋势进行预测并制定有效的决策。
本课题的研究具有重要的应用价值和现实意义。通过引入大数据处理技术与可视化分析方法,能够显著提高货运物流数据的处理效率与精确度,改善物流行业的数据管理水平。此外,该系统为物流企业提供了一种便捷、直观的分析工具,有助于优化资源配置,提升运营效率,进而推动整个行业的智能化发展。
二、货运物流数据可视化分析-视频展示
计算机专业毕设选题推荐-基于大数据的货运物流数据可视化分析【python/大数据/深度学习/机器学习定制】
三、货运物流数据可视化分析-开发环境
- 开发语言:Python
- 数据库:MySQL
- 系统架构:B/S
- 后端:Django
- 前端:vue
- 工具:PyCharm
四、货运物流数据可视化分析-项目展示
页面展示:
五、货运物流数据可视化分析-代码展示
import glob
import os
import plotly.express as px
import streamlit as st
import utils.csvUtils as dataUtil
from utils.csvUtils import warehouse_data
warehouse_data = warehouse_data[['物理仓名称', '仓库所在省']].drop_duplicates()
def upload_filer():
return st.file_uploader("选择要添加的文件", type=['csv', 'xlsx', 'xls']) # 可自定义支持的文件类型
def add_file(path, uploaded_file):
if uploaded_file is not None:
file_content = uploaded_file.getvalue()
target_path = os.path.join(path, uploaded_file.name)
try:
with open(target_path, "wb") as f:
f.write(file_content)
except Exception as e:
st.error(f"添加文件发生错误:{e}")
st.success(f