字节青训-兔群繁殖之谜

问题描述

生物学家小 R 正在研究一种特殊的兔子品种的繁殖模式。这种兔子的繁殖遵循以下规律:

  1. 每对成年兔子每个月会生育一对新的小兔子(一雌一雄)。
  2. 新生的小兔子需要一个月成长,到第二个月才能开始繁殖。
  3. 兔子永远不会死亡。

小 R 从一对新生的小兔子开始观察。他想知道在第 A 个月末,总共会有多少对兔子。

请你帮助小 R 编写一个程序,计算在给定的月份 A 时,兔子群体的总对数。

注意:

  • 初始时有 1 对新生小兔子。
  • 第 1 个月末有 1 对兔子:原来那对变成了成年兔子,并开始繁殖。
  • 第 2 个月末有 2 对兔子:原来那 1 对成年兔子,繁殖了 1 对新生的小兔子。
  • 从第 3 个月开始,兔子群体会按照上述规律增长。

 

输入

一个整数 A(1 ≤ A ≤ 50),表示月份数。

返回

一个长整数,表示第 A 个月末兔子的总对数。

测试样例

样例1:

输入:A = 1
返回:1

样例2:

输入:A = 5
返回:8

样例3:

输入:A = 15
返回:987

解题思路: 

问题理解

这个问题实际上是一个经典的斐波那契数列问题。每对兔子在一个月后变成成年兔子,并且从第二个月开始每个月都会生育一对新的小兔子。因此,兔子的数量增长符合斐波那契数列的规律。

数据结构选择

由于我们只需要记录每个月的兔子对数,并且可以通过前两个月的兔子对数推导出当前月的兔子对数,因此我们可以使用一个数组 dp 来存储每个月的兔子对数。

算法步骤

  1. 初始化

    • 第一个月(dp[1])有 1 对兔子。
    • 第二个月(dp[2])有 2 对兔子。
  2. 递推关系

    • 从第三个月开始,每个月的兔子对数等于前两个月的兔子对数之和,即 dp[i] = dp[i-1] + dp[i-2]
  3. 计算

    • 从第三个月开始,依次计算每个月的兔子对数,直到第 A 个月。
  4. 返回结果

    • 返回第 A 个月的兔子对数 dp[A]

最终代码:

def solution(n):
    # 使用动态规划来保存前两个月的兔子对数
    if n == 1:
        return 1  # 第一个月
    if n == 2:
        return 2  # 第二个月

    dp = [0] * (n + 1)  # dp[i] 表示第 i 个月的兔子对数
    dp[1] = 1  # 第一个月
    dp[2] = 2  # 第二个月

    # 计算每个月的兔子对数
    for i in range(3, n + 1):
        dp[i] = dp[i - 1] + dp[i - 2]  # 递推公式

    return dp[n]  # 返回第 n 个月的兔子对数


if __name__ == "__main__":
    # 验证输出结果是否符合预期
    print(solution(5) == 8)
    print(solution(1) == 1)
    print(solution(15) == 987)
    # print(solution(50) == 20365011074)  # 这个数字比较大,如果需要可以打开这一行进行测试

 

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

像污秽一样

谢谢谢谢谢谢谢谢谢谢谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值