AI刷题-理想火车站定位、数字魔法的加一操作

目录

一、理想火车站定位

问题描述

测试样例

解题思路:

问题理解

数据结构选择

算法步骤

最终代码:

运行结果: 

二、数字魔法的加一操作 

问题描述

输入

返回

测试样例

解题思路: 

问题理解

数据结构选择

算法步骤

最终代码: 

运行结果: 

 

 


一、理想火车站定位

问题描述

小F是A市的市长,正在计划在A市新建一个火车站以方便市民的日常出行。市区内的街道布局十分规整,形成网格状。从一个位置[x1, y1]到另一个位置[x2, y2]的距离计算方法为 |x1 - x2| + |y1 - y2|,即曼哈顿距离。

在初步考察后,市政府列出了M个可能的火车站建设点。为了使得市民到火车站的总旅行时间最短,小F希望选出一个最优位置作为火车站的地址。

请你帮助小F计算出哪一个位置最适合建设新火车站。

  • N: 市民的总人数。
  • M: 可建设火车站的备选位置数。
  • citizens: 一个列表,每个元素是一个元组 [x_i, y_i],表示第 i 位市民的居住位置。
  • locations: 一个列表,每个元素是一个元组 [p_i, q_i],表示第 i 个备选的火车站位置。

如果有多个火车站最优,那么选择第一次出现的那个。


测试样例

样例1:

输入:n = 4,m = 3,citizens = [[-1, -1], [-1, 1], [1, -1], [1, 1]],locations = [[3, 2], [1, 0], [0, 0]]
输出:[1, 0]

样例2:

输入:n = 2,m = 2,citizens = [[0, 0], [0, 4]],locations = [[0, 2], [0, 3]]
输出:[0, 2]

样例3:

输入:n = 3,m = 1,citizens = [[10, 10], [20, 20], [30, 30]],locations = [[15, 15]]
输出:[15, 15]

样例4:

输入:n = 5,m = 3,citizens = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]],locations = [[4, 5], [6, 7], [8, 9]]
输出:[4, 5]

样例5:

输入:n = 6,m = 2,citizens = [[10, 10], [20, 20], [30, 30], [40, 40], [50, 50], [60, 60]],locations = [[35, 35], [45, 45]]
输出:[35, 35]

解题思路:

问题理解

我们需要在给定的 M 个备选位置中,选择一个位置作为火车站的地址,使得所有市民到火车站的总旅行时间(曼哈顿距离)最短。

数据结构选择

  • citizens: 一个列表,每个元素是一个元组 [x_i, y_i],表示第 i 位市民的居住位置。
  • locations: 一个列表,每个元素是一个元组 [p_i, q_i],表示第 i 个备选的火车站位置。

算法步骤

  1. 初始化

    • 设置一个变量 min_distance 来记录当前最小的总距离,初始值设为无穷大。
    • 设置一个变量 best_location 来记录当前最佳位置,初始值设为一个无效的位置(例如 [-1, -1])。
  2. 遍历所有备选位置

    • 对于每一个备选位置 loc,计算所有市民到该位置的总距离。
    • 计算总距离的方法是遍历所有市民,累加每个市民到该位置的曼哈顿距离。
  3. 更新最佳位置

    • 如果当前备选位置的总距离小于 min_distance,则更新 min_distance 和 best_location
  4. 返回结果

    • 遍历完所有备选位置后,返回 best_location

最终代码:

#include <iostream>
#include <vector>
#include <limits>  // 用于获取无穷大值

std::vector<int> solution(int n, int m, std::vector<std::vector<int>> citizens, std::vector<std::vector<int>> locations) {
    int min_distance = std::numeric_limits<int>::max();  // 初始化最小距离为无穷大
    std::vector<int> best_location = {-1, -1};           // 初始化最佳位置
    
    for (const auto& loc : locations) {                   // 遍历所有备选位置
        int total_distance = 0;                          // 当前备选位置的总距离
        
        for (const auto& citizen : citizens) {            // 遍历所有市民
            int distance = abs(citizen[0] - loc[0]) + abs(citizen[1] - loc[1]);  // 计算曼哈顿距离
            total_distance += distance;                   // 累加总距离
        }
        
        // 若当前位置的总距离小于已记录的最小距离,进行更新
        if (total_distance < min_distance) {
            min_distance = total_distance;               // 更新最小距离
            best_location = loc;                         // 更新最佳位置
        }
    }
    
    return best_location;                                // 返回最佳位置
}

bool vectorEqual(std::vector<int> a, std::vector<int> b) {
    if (a.size() != b.size()) {
        return false;
    }
    for (size_t i = 0; i < a.size(); ++i) {
        if (a[i] != b[i]) {
            return false;
        }
    }
    return true;
}

int main() {
    std::vector<std::vector<int>> citizens1 = {
  
  {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
    std::vector<std::vector<int>> locations1 = {
  
  {3, 2}, {1, 0}, {0, 0}};

    std::vector<int> result = solution(4, 3, citizens1, locations1);
    std::cout << (vectorEqual(result, {1, 0}) ? "True" : "False") << std::endl;
    return 0;
}

运行结果: 

 

二、数字魔法的加一操作 

 

问题描述

数字魔法师小U发现了一种特殊的数字变换魔法。这个魔法可以对一个数字字符串进行"进位"操作。每次操作规则如下:

  • 对字符串中的每个数字进行加一操作
  • 当某位数字为9时,加一后变成 0,并在前面补 1

例如:

  • "798" 经过一次操作变成 "8109"(7→8, 9→0并向前增加一个1, 8→9)
  • "999" 经过一次操作变成 "101010"

现在给定一个数字字符串 num_str(长度为n)和操作次数 k,请计算经过 k 次操作后得到的最终结果。由于结果可能非常大,请将答案对 1000000007 (10^9 + 7) 取模。

输入

  • 第一行包含两个整数 n 和 k(1 ≤ n ≤ 50, 1 ≤ k ≤ 100)
  • 第二行包含一个长度为n的数字字符串 num_str,仅由数字0-9组成

返回

  • 返回一个整数,表示最终结果对 1000000007 取模后的值

测试样例

样例1:

输入:n = 3 ,k = 1 ,num_str = "798"
返回:8109
解释:798 经过一次操作变成 8109

样例2:

输入:n = 3 ,k = 3 ,num_str = "798"
返回:103221

  • 第一次操作:798 → 8109
  • 第二次操作:8109 → 92110
  • 第三次操作:92110 → 103221

样例3:

输入:n = 4 ,k = 3 ,num_str = "7989"
返回:10322132

解题思路: 

问题理解

我们需要对一个数字字符串进行多次"进位"操作。每次操作的规则是:

  • 对字符串中的每个数字进行加一操作。
  • 如果某位数字为9,加一后变成0,并在前面补1。

数据结构选择

由于我们需要频繁地在字符串的前面和后面进行插入和删除操作,使用deque(双端队列)是一个不错的选择。deque允许我们在两端高效地进行插入和删除操作。

算法步骤

  1. 初始化:将输入的数字字符串转换为deque,方便后续操作。
  2. 多次操作
    • 对于每次操作,遍历deque中的每个数字。
    • 对每个数字进行加一操作。
    • 如果数字变为10,将其变为0,并在前面补1。
  3. 结果生成
    • deque中的数字重新组合成一个整数。
    • 对结果取模1000000007

最终代码: 

#include <iostream>
#include <deque>
#include <string>

const long long MOD = 1000000007;

int solution(int n, int k, std::string numStr) {
    std::deque<int> numString;
    for (int i = 0; i < n; ++i) {
        numString.push_back(numStr[i] - '0');
    }

    for (int t = 0; t < k; ++t) {
        int l = numString.size();
        for (int i = 0; i < l; ++i) {
            int num = numString.front();
            numString.pop_front();
            num += 1;
            if (num == 10) {
                numString.push_back(1);
                numString.push_back(0);
            } else {
                numString.push_back(num);
            }
        }
    }

    long long result = 0;
    int l = numString.size();
    for (int i = 0; i < l; ++i) {
        result = (result * 10 + numString.front()) % MOD;
        numString.pop_front();
    }

    return result;
}

int main() {
    // You can add more test cases here
    std::cout << (solution(3, 1, "798") == 8109) << std::endl;
    std::cout << (solution(3, 3, "798") == 103221) << std::endl;

    return 0;
}

运行结果: 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

像污秽一样

谢谢谢谢谢谢谢谢谢谢谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值