树的一些知识

目录

一.树的定义

二.结点分类

三.结点间的关系

四.树的性质

五.树的存储结构


一.树的定义

树是n个结点的有限集合。当n=0时为空树,在任意一颗非空树中:

  • 有且仅有一个特定的称为根的结点
  • 当n>1时,其余结点可分为m个互不相交的有限集T1,T2……Tm,其中每一个集合本身又是一棵树,并且称为根的子树

 

二.结点分类

 

 图片中,每一个圈,称为树的一个结点。结点拥有的子树数称为结点的度,树的度取树内各节点的度的最大值。

  • 度为0的结点称为叶节点或终端节点
  • 度不为0的结点称为分支节点或非终端节点,除根结点外,分支节点也称为内部节点

三.结点间的关系

 结点的子树的根称为结点的孩子,相应的,该节点称为孩子的双亲,同一双亲的孩子之间称为兄弟。结点的祖先是从根到该结点所经分支上的所有结点

  • 结点得到层次(深度):从上往下
  • 结点的高度:从下往上
  • 树的高度:总共有几层
  • 树的度:个结点度的最大值

四.树的性质

  1. 特点:树的根节点没有前驱,除根节点外的所有结点有且只有一个前驱;树中所有结点可以有0个或多个后继
  2. n个结点的树中有n-1条边
  3. 树中的结点数等于所有结点的度数加1
  4. 度为m的树中第i层上至多有m^(i-1)个结点(i>=1)
  5. 高度为h的m叉树至多有(m^h-1)/(m-1)个结点
  6. 具有n个结点的m叉树的最小高度为logm(n(m-1)+1)

五.树的存储结构

1.双亲表示法

//树的双亲表示法结点结构定义
#define MAX_TREE_SIZE 100
typedef int TElemType;//树节点的数据类型,暂且定义为整型
//结点结构
typedef struct PTNode
{
    TElemType data;    //结点数据
    int parent;
}PTNode;
//树结构
typedef struct
{
    PTNode nodes[MAX_TREE_SIZE];    //结点数组
    int r,n;//根的位置和结点数
}PTree;

data是数据域,存储结点的数据信息,而parent是指针域,存储该结点的双亲在数组中的下标

2.孩子表示法

//树的孩子表示法结构定义
#define MAX_TREE_SIZE 100
//孩子结点
typedef struct CTNode
{
	int child;
	struct CTNode *next;
 }*ChildPtr;
 //表头节点
 typedef struct 
 {
 	TElemType data;
 	ChildPtr firstchild;
  } CTBox;
//树结构
typedef struct
{
	CTBox nodes[MAX_TREE_SIZE];//结点数组
	int r,n;	//根的位置和结点数 
 } 

把每个结点的孩子结点排列起来,以单链表作为存储结构,则n个结点有n个孩子链表,如果是叶子结点则此单链表为空,然后n个头指针又组成一个线性表,采取顺序存储结构,存放到一个一维数组中

 设计了两种结点结构,一个是孩子链表的孩子结点:

child是数据域,采用存储某个结点在表头数组中的下标,next是指针域,采用存储指向某个结点的下一个孩子结点的指针

另一个是表头数组的表头节点:

data是数据域,存储某个结点的数据信息;firstchild是头指针域,存储该节点的孩子链表的头指针

3.孩子兄弟表示法

//树的孩子兄弟表示法结构定义
typedef struct CSNode
{
    TElemType data;
    struct CSDode *firstchild,*rightsib;
}CSTree;

这种表示类似于二叉树,data是指针域;firstchild是指针域,存储该节点的第一个孩子结点的储存地址;rightsib是指针域,存储该节点的右兄弟结点的储存地址

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值