目录
一.树的定义
树是n个结点的有限集合。当n=0时为空树,在任意一颗非空树中:
- 有且仅有一个特定的称为根的结点
- 当n>1时,其余结点可分为m个互不相交的有限集T1,T2……Tm,其中每一个集合本身又是一棵树,并且称为根的子树
二.结点分类
图片中,每一个圈,称为树的一个结点。结点拥有的子树数称为结点的度,树的度取树内各节点的度的最大值。
- 度为0的结点称为叶节点或终端节点
- 度不为0的结点称为分支节点或非终端节点,除根结点外,分支节点也称为内部节点
三.结点间的关系
结点的子树的根称为结点的孩子,相应的,该节点称为孩子的双亲,同一双亲的孩子之间称为兄弟。结点的祖先是从根到该结点所经分支上的所有结点
- 结点得到层次(深度):从上往下
- 结点的高度:从下往上
- 树的高度:总共有几层
- 树的度:个结点度的最大值
四.树的性质
- 特点:树的根节点没有前驱,除根节点外的所有结点有且只有一个前驱;树中所有结点可以有0个或多个后继
- n个结点的树中有n-1条边
- 树中的结点数等于所有结点的度数加1
- 度为m的树中第i层上至多有m^(i-1)个结点(i>=1)
- 高度为h的m叉树至多有(m^h-1)/(m-1)个结点
- 具有n个结点的m叉树的最小高度为logm(n(m-1)+1)
五.树的存储结构
1.双亲表示法
//树的双亲表示法结点结构定义
#define MAX_TREE_SIZE 100
typedef int TElemType;//树节点的数据类型,暂且定义为整型
//结点结构
typedef struct PTNode
{
TElemType data; //结点数据
int parent;
}PTNode;
//树结构
typedef struct
{
PTNode nodes[MAX_TREE_SIZE]; //结点数组
int r,n;//根的位置和结点数
}PTree;
data是数据域,存储结点的数据信息,而parent是指针域,存储该结点的双亲在数组中的下标
2.孩子表示法
//树的孩子表示法结构定义
#define MAX_TREE_SIZE 100
//孩子结点
typedef struct CTNode
{
int child;
struct CTNode *next;
}*ChildPtr;
//表头节点
typedef struct
{
TElemType data;
ChildPtr firstchild;
} CTBox;
//树结构
typedef struct
{
CTBox nodes[MAX_TREE_SIZE];//结点数组
int r,n; //根的位置和结点数
}
把每个结点的孩子结点排列起来,以单链表作为存储结构,则n个结点有n个孩子链表,如果是叶子结点则此单链表为空,然后n个头指针又组成一个线性表,采取顺序存储结构,存放到一个一维数组中
设计了两种结点结构,一个是孩子链表的孩子结点:
child是数据域,采用存储某个结点在表头数组中的下标,next是指针域,采用存储指向某个结点的下一个孩子结点的指针
另一个是表头数组的表头节点:
data是数据域,存储某个结点的数据信息;firstchild是头指针域,存储该节点的孩子链表的头指针
3.孩子兄弟表示法
//树的孩子兄弟表示法结构定义
typedef struct CSNode
{
TElemType data;
struct CSDode *firstchild,*rightsib;
}CSTree;
这种表示类似于二叉树,data是指针域;firstchild是指针域,存储该节点的第一个孩子结点的储存地址;rightsib是指针域,存储该节点的右兄弟结点的储存地址