在极端的环境里面,足够好,有时候还是不足够好,所以准备好克服各种各样的困难,在亚马逊云科技应对的是各种极端的环境。
比如,F1赛车有5亿个不同的数据点需要得到监控,从60到12个小时的减少时间,Epic Game需要支持上亿个不同的玩家,所以他们有很多的要求,他们需要处理成亿的不同的要求,也可以给他们提供非常小的延迟。Nielsen每天有数十亿的数据需要处理。所以亚马逊云科技一直在创新,长期为客户提供所有数据分析的可用工具。亚马逊云科技现在有600多种实例类型来满足几乎任何类型的需求或使用案例,其中许多实例使用的是特别定制的芯片。
Hpc6id实例
以HPC客户的需求为例,首先要根据他们确切的工作负载来确定他们的性能的规模;第二,就是要提供简易使用的工具,确保客户可以多方尝试,用更少的时间来管理他们的基础设施。HPC就是一个很好的选择,它可以将管理扩展到数百万的用例上面,最大程度地优化客户的工作负载。
基于此,亚马逊云科技正式发布了用于高性能计算(HPC)的新亚马逊弹性计算云(Amazon EC2)Hpc6id实例,基于Amazon Nitro系统构建的EC2 Hpc6id实例提供200Gbps弹性结构适配器网络,用于高吞吐量节点间通信,使客户HPC工作负载能够大规模运行。Adam表示:“Hpc6id实例旨在为数据、内存密集型HPC工作负载、更高的内存带宽、更快的本地SSD存储和弹性结构适配器增强的网络提供领先的性价比。使用EC2 Hpc6id实例,可以降低HPC工作负载的成本,同时利用亚马逊云科技的弹性和可扩展性。”
多样化的强大实例满足您的所有需求
今天的机器学习模型已经发展到使用1000亿个参数,在短短几年内增加了一百倍。这大大提高了训练机器学习模型的成本。随着企业构建的机器学习模型越来越复杂,训练和运行这些模型的成本成为一个现实问题。亚马逊云科技创建了一系列创新实例来帮助用户降低成本,Adam提到Trn1实例专为高性能训练而构建,同时与同类基于GPU的实例相比,可节省高达50%的训练成本。Trn1实例对流行的NLP模型进行深度学习训练时提供最高性能。同时宣布推出EC2 Inf2实例预览版,旨在以最低的成本为推理应用程序提供高性能。与Inf1实例相比,Inf2实例提供高3倍的计算性能、高4倍的吞吐量和低10倍的延迟。
云的真正力量就在于探索未知领域,帮助客户抓住机遇取得发展,亚马逊云科技如何驭云而行。