位运算
一、异或运算
运算规则:相同为0,不同为1
- N^0=N
- N^N=0
- a ^ b=b ^ a
- (a ^ b ) ^ c = a ^ ( b ^ c)
示例1:交换两个数
a=a^b;
b=a^b;//b=(a^b)^b;
a=b^a;//a=(a^b)^a;
示例2:获取一个数字最右侧的1
a & ( ~a + 1) => a & -a
/*
一个负数的补码就是按位取反+1
*/
示例3:找到只出现一次的数字
- 将这个两个元数标记为x,y,那么将所有数字异或得到的结果肯定是x^y=k;
- x!=y,因为是二进制所以肯定有一位一个是1一个是0(k是所有数据异或的结果,所以说我们要找到x和y的差异位,将所有数据分为两组分别异或)
- 这个差异位就是最右边的1,就是 flag = k ^ -k;因为最右边的1就是x^y得到的;
- 求一次异或得到 x ,然后用 xyx = k ^x 得到 y = k ^ x ;
#include<bits/stdc++.h>
using namespace std;
int main(){
int n;cin>>n;
vector<int> nums(n);
for(auto &x:nums)cin>>x;
// Step 1: 对数组中的所有元素进行异或操作,得到两个只出现一次的数字的异或结果
int xor_result = 0;
for (int num : nums) {
xor_result ^= num;
}
// Step 2: 根据 xor_result 中为 1 的某一位,将原数组分为两个子数组
int diff_bit = xor_result & -xor_result; // 找到 xor_result 中最右边的 1
int num1 = 0, num2 = 0;
for (int num : nums) {
if (num & diff_bit) {
num1 ^= num; // 在 diff_bit 位上为 1 的数字
} else {
num2 ^= num; // 在 diff_bit 位上为 0 的数字
}
}
// Step 3: 返回两个只出现一次的数字
cout<<num1<<' '<<num2<<'\n';
return 0;
}
示例4:反转二进制
for (int i = 0; i < 32; i++) {
res = res << 1; // 左移一位,腾出位置
res += n & 1; // 取最后一位
n = n >> 1; // 让这个数右移
}