异或运算的简单使用

位运算

一、异或运算

运算规则:相同为0,不同为1

  1. N^0=N
  2. N^N=0
  3. a ^ b=b ^ a
  4. (a ^ b ) ^ c = a ^ ( b ^ c)

示例1:交换两个数

	a=a^b;
	b=a^b;//b=(a^b)^b;
	a=b^a;//a=(a^b)^a;

示例2:获取一个数字最右侧的1

a & ( ~a + 1) => a & -a
/*
	一个负数的补码就是按位取反+1
*/

示例3:找到只出现一次的数字

在这里插入图片描述

  1. 将这个两个元数标记为x,y,那么将所有数字异或得到的结果肯定是x^y=k;
  2. x!=y,因为是二进制所以肯定有一位一个是1一个是0(k是所有数据异或的结果,所以说我们要找到x和y的差异位,将所有数据分为两组分别异或)
  3. 这个差异位就是最右边的1,就是 flag = k ^ -k;因为最右边的1就是x^y得到的;
  4. 求一次异或得到 x ,然后用 xyx = k ^x 得到 y = k ^ x ;
#include<bits/stdc++.h>
using namespace std;
int main(){
	int n;cin>>n;
	vector<int> nums(n);
	for(auto &x:nums)cin>>x;
    // Step 1: 对数组中的所有元素进行异或操作,得到两个只出现一次的数字的异或结果
    int xor_result = 0;
    for (int num : nums) {
        xor_result ^= num;
    }
    // Step 2: 根据 xor_result 中为 1 的某一位,将原数组分为两个子数组
    int diff_bit = xor_result & -xor_result; // 找到 xor_result 中最右边的 1
    int num1 = 0, num2 = 0;
    for (int num : nums) {
        if (num & diff_bit) {
            num1 ^= num; // 在 diff_bit 位上为 1 的数字
        } else {
            num2 ^= num; // 在 diff_bit 位上为 0 的数字
        }
    }
    // Step 3: 返回两个只出现一次的数字
    cout<<num1<<' '<<num2<<'\n';
    return 0;
}

示例4:反转二进制

    for (int i = 0; i < 32; i++) {
        res = res << 1;  // 左移一位,腾出位置
        res += n & 1;    // 取最后一位
        n = n >> 1;      // 让这个数右移
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

席万里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值