15. 三数之和18.四数之和

15. 三数之和

给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请你返回所有和为 0 且不重复的三元组。

注意:答案中不可以包含重复的三元组。

示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。

示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。

示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。

提示:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105


暴力枚举,三层循环直接超时。。。。所以我们就考虑到双指针,确定第一个值,剩下的两个值就行左右指针选择就行了。

// 15.三数之和
func threeSum(nums []int) [][]int {
	sort.Slice(nums, func(i, j int) bool {
		return nums[i] < nums[j]
	})
	var res [][]int
	for i := 0; i < len(nums)-2; i++ {
		n1 := nums[i]
		if n1 > 0 {
			return res
		}
		// n1去重
		if i > 0 && nums[i-1] == n1 {
			continue
		}
		l, r := i+1, len(nums)-1
		for l < r {
			n2, n3 := nums[l], nums[r]
			if n1+n2+n3 == 0 {
				res = append(res, []int{n1, n2, n3})
				// 防止n2 n3重复
				for l < r && nums[l] == n2 {
					l++
				}
				for l < r && nums[r] == n3 {
					r--
				}
			} else if n1+n2+n3 < 0 {
				// n2偏小
				l++
			} else {
				r--
			}
		}
	}
	return res
}

18. 四数之和

给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复):

0 <= a, b, c, d < n
a、b、c 和 d 互不相同
nums[a] + nums[b] + nums[c] + nums[d] == target
你可以按 任意顺序 返回答案 。

示例 1:
输入:nums = [1,0,-1,0,-2,2], target = 0
输出:[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]

示例 2:
输入:nums = [2,2,2,2,2], target = 8
输出:[[2,2,2,2]]

提示:
1 <= nums.length <= 200
-109 <= nums[i] <= 109
-109 <= target <= 109


和三数之和,同等类似的题,只需要在确定第一个值后,再添加一个循环就行了。

// 18.四数之和
func fourSum(nums []int, target int) [][]int {
	sort.Slice(nums, func(i, j int) bool {
		return nums[i] < nums[j]
	})
	var res [][]int
	for i := 0; i < len(nums)-3; i++ {
		n1 := nums[i]
		if i > 0 && n1 == nums[i-1] {
			continue
		}
		for j := i + 1; j < len(nums)-2; j++ {
			n2 := nums[j]
			if j > i+1 && n2 == nums[j-1] {
				continue
			}
			l, r := j+1, len(nums)-1
			for l < r {
				n3, n4 := nums[l], nums[r]
				sum := n1 + n2 + n3 + n4
				if sum == target {
					res = append(res, []int{n1, n2, n3, n4})
					// 防止 n3 和 n4 重复
					for l < r && nums[l] == n3 {
						l++
					}
					for l < r && nums[r] == n4 {
						r--
					}
				} else if sum < target {
					// n2偏小
					l++
				} else {
					r--
				}
			}
		}
	}
	return res
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

席万里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值