题目故事:
快乐数(happy number)有以下的特性:在给定的进位制下,该数字所有数位(digits)的平方和,
得到的新数再次求所有数位的平方和,如此重复进行,最终结果必定为1。
以十进位为例:
2 8 → 2²+8²=68 → 6²+8²=100 → 1²+0²+0²=1
3 2 → 3²+2²=13 → 1²+3²=10 → 1²+0²=1
3 7 → 3²+7²=58 → 5²+8²=89 → 8²+9²=145 → 1²+4²+5²=42 → 4²+2²=20 →
2²+0²=4 → 4²=16 → 1²+6²=37……
因此28和32是快乐数,而在37的计算过程中,37重覆出现,继续计算的结果只会是上述数字的循环,不会出现1,因此37不是快乐数。
不是快乐数的数称为不快乐数(unhappy number),所有不快乐数的数位平方和计算,最后都会进入 4 → 16 → 37 → 58 → 89 → 145 → 42 → 20 → 4 的循环中。
在十进位下,100以内的快乐数有(OEIS中的数列A00770) :
1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100。
题目一:进行数字输入,判断是否为快乐数
def sum_square(n): # 控制每位数的平方相加返回结果
sum1 = 0
for i in str(n): # str函数变成字符串,在切成每个数位
sum1 += int(i) ** 2 # 乘以平方
return sum1
def happy_numpy(): # 判断是否为快乐数
list1 = []
n = int(input('请输入数字:'))
while sum_square(n) not in list1: # 设置判断进行判定有没有重复/sum_square(n)算下一次值有没有在list列表里
n = sum_square(n) # 将n赋值为下一次运算值
list1.append(n) # 将n添加到列表里
if n == 1:
print('是快乐数')
else:
print('不是快乐数')
happy_numpy()