专家系统
原文地址链接: https://kashima19960.github.io/2024/07/17/人工智能/6.专家系统/,一般有最新的修改都是在我的个人博客里面,所以在当前平台的更新会比较慢,请见谅😃
概述
本章主要介绍专家系统的概念、原理,创建过程,并补充知识发现与数据挖掘内容
重点:专家系统的工作原理和体系结构,知识获取的过程和模式
难点:如何设计和创建专家系统
AI第2次高峰(60年代) - 费根鲍姆
1968年,爱德华·费根鲍(Edward Feigenbaum)提出首个专家系统DENDRAL,并对知识库给出了初步定义,这也孕育了后来的第二次人工智能浪潮。
该系统具有非常丰富的化学知识,可根据质谱数据帮助化学家推断分子结构。
专家系统(Expert Systems)是AI的一个重要分支,同自然语言理解,机器人学并列为AI的三大研究方向。
定义:使用人类专家推理的计算机模型来处理现实世界中需要专家作出解释的复杂问题,并得出与专家相同的结论。
可视作“知识库(knowledge base)”和“推理机 (inferencemachine)” 的结合。
专家系统 - 起源、演进发展
研究目的:不是研制AI专家代替人类专家,而是研制人类专家的AI助手
开始时间 | 突出成果、里程碑事件 | 发展程度 |
---|---|---|
20世纪60年代中期 | •DENDRAL系统(斯坦福大学费根鲍 ): 用于推断化学分子结构 •MYCSYMA系统(MIT): 用于数学运算 | 单问题专业系统 |
20世纪70年代中期 | •MYCIN系统(斯坦福大学): 用于血液感染病诊断 •PROSPCTOR系统(斯坦福研究所): 辅助矿藏探测 | 单学科专业系统 |
20世纪80年代中期 | •RI(XCON)系统(DEC公司、卡内基梅隆大学) 辅助制定计算机系统硬件配置方案 •Siri系统(苹果公司): 苹果公司研发的语音识别接口专家系统 | 多学科专业系统 |
2022年-未来 | 基于人工智能大模型,引入多学科协同求解与并行推理机制,可以调用海量现有知识库 | 大型多专家协作系统 |
专家系统 - 定义
常规定义:是一类具有专业知识和经验的计算机智能程序系统,能凭借人工智能中的知识表示和知识推理来解决复杂问题,基于海量知识库,在功能上可以达到甚至超越同领域中人类专家的水平。
让计算机系统像人类专家一样根据自身知识对问题进行逻辑推理、解释说明、给出解决方案,帮助人类解决问题是理解专家系统的基本出发点。
专家系统 - 特点
特点 | 内容 |
---|---|
具有专家水平的专业知识 | 这是专家系统的最大特点。专家系统具有的知识越丰富,质量越高,解决问题的能力就越强 |
能进行有效的推理 | 不仅能根据确定性知识进行推理,而且能根据不确定的知识进行推理,其解决问题的方法都是经验性的,仅以一定的可能性存在 |
具有启发性 | 能根据某些条件选定一个假设,使推理继续进行,能依据经验来对求解 的问题做出多个假设。 |
具有灵活性 | 知识库和推理机相互独立,保证了当知识库做适当修改和更新时,推理 机部分可以不变,使系统易于扩充,具有较大的灵活性。 |
具有透明性 | 具有解释机构,向用户解释推理过程,给出推理过程 |
具有交互性 | 具有较好的人机交互界面。1)需要与领域专家和知识工程师进行对话以获取知识;2)也需要不断地从用户那里获得所需的已知事实,并回答用户的询问。 |
专家系统与传统系统的比较
传统系统 | 专家系统 | |
---|---|---|
编程思想 | 数据结构+算法 | 知识+推理 |
知识存储方式 | 求解问题的知识隐含在程序中 | 知识存储在知识库,与推理机分离 |
处理对象 | 数值计算和数据处理 | 符号处理 |
解释说明功能 | 不具备解释说明功能 | 具备解释说明功能 |
答案的可靠性 | 数学逻辑准确的情况下能产生正确答案 | 通常产生正确答案 有时产生错误答案 |
解决问题能力 | 较弱 | 较强,更灵活,可处理具有挑战性的决策问题并提供解决方案 |
系统体系结构 | 算法+主程序 | 推理机+知识库+用户接口+解释器 |