C语言(求解一元二次方程的根)

  • 以下程序均在Visual C++6.0中运行成功

例:求方程2x^2-3x-6=0的根


#include <stdio.h>
#include <math.h>
void main()
{
    double a=2,b=-3,c=3-6,delt,x1,x2;//double换成float,可以运行,但会出现警告:warning C4244: '=' : conversion from 'double ' to 'float ', possible loss of data
    delt = b*b-4*a*c;
    x1=(-b+sqrt(delt))/(2*a);//sqrt为数学函数,表示根号
    x2=(-b-sqrt(delt))/(2*a);
    printf("x1=%.2lf x2=%.2lf\n",x1,x2);
}

运行结果:


x1=2.19 x2=-0.69
Press any key to continue

  • 求解一元二次方程的根的通用方法

  • 根据数学知识,首先要判断delta与0的关系,同时还要判断二次项系数系数是否为0


#include<stdio.h>
#include<math.h>
void main()
{
    double a,b,c,x,x1,x2,delta;
    printf("分别输入方程的三个系数:");
    scanf("%lf %lf %lf",&a,&b,&c);
    if(a)//a可以写成a==0
    {
        delta=sqrt(b*b-4*a*c);//sqrt为数学函数,表示根号
        if(!delta)//!delta可以写成delita==0
        {
            x1=x2=(-b)/(2*a);
            printf("该方程有唯一解:x1=x2=%.2lf\n",x1,x2);//保留了两位小数,精确度可调
        }
        else if(delta>0)
        {
            x1=(-b+delta)/(2*a);
            x2=(-b-delta)/(2 * a);
            printf("x1=%.2lf x2=%.2lf\n",x1,x2);
        }
        else 
            printf("该方程无解");
    }
    else
    {
        x=-c/b;
        printf("该方程的解为:x=%.2lf\n",x);
    }
}

 

作者主页: 正函数的个人主页
文章收录专栏: C语言

欢迎大家点赞 👍 收藏 ⭐ 加关注哦!
如果你认为这篇文章对你有帮助,请给正函数点个赞吧,如果发现什么问题,欢迎评论区留言!!

 

在C语言中,可以使用公式法或数值方法(如牛顿迭代法)来求解一元二次方程。这里我们先简单介绍公式法,因为它是直接的数学运算,不需要迭代。 假设有一个标准的一元二次方程形式:ax^2 + bx + c = 0,其中a、b、c是常数,a ≠ 0。其可以通过下面的公式计算: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 这是两个解,一个是加号(+),另一个是减号(-)。C语言中,你可以创建一个函数来实现这个计算,例如: ```c #include <stdio.h> #include <math.h> // 包含数学库以便使用sqrt函数 // 函数声明 double quadratic_solver(double a, double b, double c); int main() { double a, b, c; printf("请输入一元二次方程的系数(a, b, c): "); scanf("%lf %lf %lf", &a, &b, &c); if (a == 0) { // 检查是否为一次方程 printf("这不是一个标准的一元二次方程.\n"); } else { double root1 = quadratic_solver(a, b, c); double root2 = quadratic_solver(a, b, c); // 注意这里不需要再次调用,因为是两个解 printf("方程的解为: %.2lf 和 %.2lf\n", root1, root2); } return 0; } // 解决函数 double quadratic_solver(double a, double b, double c) { double discriminant = b * b - 4 * a * c; // 计算判别式 if (discriminant > 0) { double sqrt_val = sqrt(discriminant); return (-b + sqrt_val) / (2 * a), (-b - sqrt_val) / (2 * a); // 返回两个实 } else if (discriminant == 0) { // 零次方程,只有一个实 return -b / (2 * a); } else { // 有两个复数 double real_part = -b / (2 * a); double imaginary_part = sqrt(-discriminant) / (2 * a); return real_part, real_part + imaginary_part*I; // I是虚数单位,表示复数 } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.正函数.

你的鼓励是我创作制作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值