- 博客(29)
- 收藏
- 关注
原创 车牌检测系统源码分享
数据集信息展示在现代智能交通系统中,车牌检测技术扮演着至关重要的角色,广泛应用于车辆识别、交通监控、停车管理等多个领域。为此,构建一个高效且准确的车牌检测模型显得尤为重要。本研究采用的数据集名为“Car-plate detection”,专门用于训练和改进YOLOv8的车牌检测系统。该数据集的设计旨在为模型提供丰富的训练样本,以提升其在实际应用中的性能。“Car-plate detection”数据集包含了多样化的车牌图像,涵盖了不同品牌、颜色、形状和背景的车辆。
2024-10-09 09:39:15 913
原创 车牌检测系统源码分享[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]
数据集信息展示在现代智能交通系统中,车牌检测技术扮演着至关重要的角色,广泛应用于车辆识别、交通监控、停车管理等多个领域。为此,构建一个高效且准确的车牌检测模型显得尤为重要。本研究采用的数据集名为“Car-plate detection”,专门用于训练和改进YOLOv8的车牌检测系统。该数据集的设计旨在为模型提供丰富的训练样本,以提升其在实际应用中的性能。“Car-plate detection”数据集包含了多样化的车牌图像,涵盖了不同品牌、颜色、形状和背景的车辆。
2024-10-09 09:36:09 1417
原创 龋齿牙齿病变图像分割系统源码&数据集分享
数据集信息展示在现代牙科医学中,龋齿的早期诊断与治疗至关重要,而图像分割技术在这一领域的应用为牙科医生提供了更为精确的工具。为此,我们构建了一个名为“tooth segmentation”的数据集,旨在训练改进版的YOLOv8-seg模型,以实现对牙齿病变图像的高效分割。该数据集专注于八种不同的牙齿病变类型,涵盖了从龋齿到各种修复体的多样性,确保模型能够识别和分割这些关键特征。
2024-10-09 09:22:03 751
原创 室内物品墙体脱落分割系统源码&数据集分享
数据集信息展示在本研究中,我们使用了名为“Building_segment”的数据集,以支持改进YOLOv8-seg的室内物品墙体脱落分割系统的训练与评估。该数据集专门设计用于室内环境的物体分割任务,涵盖了多种建筑元素和室内物品,具有17个不同的类别。
2024-10-08 21:44:47 636
原创 文本区域分割系统源码&数据集分享
数据集信息展示在现代计算机视觉领域,文本区域分割的研究日益受到重视,尤其是在处理文档图像和名片等场景时。为此,我们构建了一个名为“more2”的数据集,旨在为改进YOLOv8-seg模型提供丰富的训练素材,以提升其在文本区域分割任务中的表现。该数据集包含五个类别,具体包括“0”、“2”、“business-name-card”、“doc”和“wendang”,每个类别均具有独特的特征和应用场景,能够为模型的训练提供多样化的样本。
2024-10-08 20:24:44 1102
原创 细菌实例分割系统源码&数据集分享
数据集信息展示在本研究中,我们采用了名为“ku-al”的数据集,以训练和改进YOLOv8-seg模型,旨在实现高效的细菌实例分割。该数据集包含75个不同的细菌类别,涵盖了广泛的微生物种类,提供了丰富的样本以支持深度学习模型的训练。每个类别都代表了特定的细菌种类,具有独特的形态特征和生物学特性,这为模型的学习和泛化能力提供了良好的基础。
2024-10-08 19:04:52 888
原创 医疗工具实例分割系统源码&数据集分享
数据集信息展示在本研究中,我们使用了名为“Medical_tools”的数据集,以训练和改进YOLOv8-seg模型,旨在提升医疗工具的实例分割能力。
2024-10-08 17:44:49 1090
原创 海洋鱼类图像分类分割系统源码&数据集分享
数据集信息展示在本研究中,我们使用了名为“ld_fishes-2024”的数据集,旨在训练和改进YOLOv8-seg的海洋鱼类图像分类与分割系统。该数据集包含82个不同的鱼类类别,涵盖了广泛的海洋生态系统,能够为深度学习模型提供丰富的训练样本。
2024-10-08 16:24:55 1229
原创 城市交通场景分割系统源码&数据集分享
数据集信息展示在城市交通场景分割系统的研究中,数据集的选择和构建至关重要。本项目所使用的数据集名为“car_train4”,它专门为改进YOLOv8-seg模型而设计,旨在提升城市交通环境中物体的分割精度与效率。该数据集包含21个类别,涵盖了城市交通场景中常见的各种元素,为模型的训练提供了丰富的标注信息。
2024-10-08 15:04:58 1009
原创 甲虫身体图像分割系统源码&数据集分享
数据集信息展示在本研究中,我们使用了名为“ground beetles”的数据集,以改进YOLOv8-seg的甲虫身体图像分割系统。该数据集专注于地面甲虫的多样性,包含18个不同的类别,涵盖了丰富的生态特征和形态特征。
2024-10-08 13:45:03 1559
原创 门窗对象检测系统源码分享[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]
数据集信息展示在本研究中,我们使用了名为“CAD object window door”的数据集,以支持对门窗对象检测系统的改进,特别是针对YOLOv8模型的训练与优化。该数据集专注于两个主要类别:门(door)和窗(window),这两个类别在建筑物的结构设计和空间利用中具有重要意义。通过精确识别和分类这些对象,能够为智能建筑、自动化监控以及增强现实等应用提供强有力的支持。“CAD object window door”数据集包含丰富的标注信息,旨在为深度学习模型提供高质量的训练样本。
2024-10-08 13:41:09 1380
原创 指针式表盘指针关键部位分割系统源码&数据集分享
数据集信息展示在现代计算机视觉领域,尤其是在物体检测和分割任务中,数据集的质量和多样性对模型的性能起着至关重要的作用。本研究所使用的数据集名为“HSI Barak RAGC1 Segmentation”,专门用于训练和改进YOLOv8-seg模型,以实现对指针式表盘指针关键部位的精确分割。该数据集的设计旨在捕捉和标注与指针式表盘相关的多种元素,涵盖了23个不同的类别,为模型提供了丰富的学习素材。在这个数据集中,类别的划分非常细致,涵盖了从数字到功能指示的多种元素。
2024-10-08 12:25:25 702
原创 快餐食品检测系统源码分享[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]
数据集信息展示在本研究中,我们使用了名为“burger detection”的数据集,以改进YOLOv8在快餐食品检测系统中的表现。该数据集专门针对快餐食品的多样性进行设计,涵盖了六个主要类别,分别是:bbq、bread、bun、hotdog、pattty和patty。这些类别的选择不仅反映了快餐食品的常见种类,还考虑到了它们在实际应用中的重要性,尤其是在餐饮行业的食品识别和分类任务中。数据集的构建过程经过精心设计,确保每个类别的样本数量和质量都能满足深度学习模型训练的需求。
2024-10-08 12:21:22 1473
原创 靶标弹孔检测系统源码分享
数据集信息展示在现代计算机视觉领域,目标检测技术的进步为多种应用场景提供了强有力的支持,尤其是在安全监控、法医分析以及军事领域中,靶标弹孔的检测显得尤为重要。为此,我们构建了一个专门用于训练和改进YOLOv8靶标弹孔检测系统的数据集,命名为“BulletPoints”。该数据集的设计旨在提供高质量的样本,以提高弹孔检测的准确性和鲁棒性。“BulletPoints”数据集包含了丰富的图像数据,专注于靶标弹孔这一特定类别。该数据集的类别数量为1,类别名称为“Bullet Hole”。
2024-10-08 11:57:54 903
原创 日常场景图像分割系统源码&数据集分享
数据集信息展示在本研究中,我们采用了名为“combined_core_spur”的数据集,以训练和改进YOLOv8-seg模型,旨在实现日常场景图像的高效分割。该数据集包含42个类别,涵盖了多种日常生活中常见的物体和场景元素,为模型的训练提供了丰富的样本和多样化的背景。这些类别的设计不仅考虑了物体的核心特征,还引入了“spurious”类别,以增强模型对复杂场景的适应能力和鲁棒性。
2024-10-08 11:05:30 676
原创 外国钞票面值检测系统源码分享[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]
数据集信息展示在本研究中,我们使用了名为“budamonl”的数据集,旨在改进YOLOv8模型在外国钞票面值检测系统中的应用。该数据集的设计考虑到了多样性和复杂性,以确保模型能够在实际应用中表现出色。数据集包含9个类别,分别是:100k、10k、1k、200k、20k、2k、500k、50k和5k。这些类别涵盖了不同面值的钞票,能够为模型提供丰富的训练样本,从而提高其识别精度和鲁棒性。
2024-10-08 11:01:47 1500
原创 车牌字符识别系统源码分享
数据集信息展示在本研究中,我们使用了名为“binhlt”的数据集,以改进YOLOv8的车牌字符识别系统。该数据集专门设计用于字符识别任务,包含36个类别,涵盖了数字和字母的组合,具体类别包括从数字0到9,以及字母A到Z。这种丰富的类别设置使得数据集能够有效地模拟真实世界中车牌的多样性,提供了良好的训练基础。“binhlt”数据集的构建考虑到了车牌字符的多样性和复杂性,旨在提高YOLOv8在车牌识别任务中的准确性和鲁棒性。
2024-10-07 18:45:27 1527
原创 子弹生产线残次品检测系统源码分享
数据集信息展示在现代制造业中,尤其是在子弹生产线的质量控制环节,准确高效的残次品检测系统显得尤为重要。为此,我们构建了一个名为“bbji-2”的数据集,旨在为改进YOLOv8模型提供丰富的训练数据,以提升其在子弹生产过程中对残次品的检测能力。该数据集专注于子弹的不同部件,通过对每个部件的细致分类,确保检测系统能够精准识别出潜在的缺陷。
2024-10-07 15:40:02 1293
原创 苦瓜检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“Ampalaya”的数据集,旨在改进YOLOv8模型在苦瓜(Ampalaya)检测任务中的表现。该数据集专注于苦瓜这一特定类别,具有单一类别的特征,适合于针对特定物体的检测和识别任务。数据集的类别数量为1,类别列表中仅包含“ampalaya”这一项,这为模型的训练提供了明确的目标,简化了分类过程,同时也提高了模型在特定任务上的精度。“Ampalaya”数据集的构建过程经过精心设计,确保了数据的多样性和代表性。
2024-10-07 12:34:52 976
原创 家禽自动识别监控系统源码分享
数据集信息展示在本研究中,我们采用了名为“adahii”的数据集,以支持改进YOLOv8的家禽自动识别监控系统的训练和测试。该数据集专注于四种特定的家禽品种,分别是巴巴里(barbari)、哈里(hari)、奈米(naimi)和斯瓦基尼(swakini)。这些品种在农业生产中具有重要的经济价值和生态意义,因此对其进行准确的自动识别和监控,将为家禽养殖业的管理和优化提供强有力的技术支持。“adahii”数据集的设计考虑到了家禽的多样性和复杂性。
2024-10-02 11:53:57 1462
原创 机械零件检测系统源码分享
数据集信息展示在现代制造业和自动化领域,机械零件的检测与识别扮演着至关重要的角色。为了提高机械零件检测系统的准确性和效率,我们构建了一个名为“0428parts”的数据集,专门用于训练和改进YOLOv8模型。该数据集涵盖了九种不同类型的机械零件,旨在为研究人员和工程师提供一个高质量的训练基础,以实现更为精准的零件识别和分类。
2024-10-01 19:26:52 1298
原创 [faster-rcnn][ssd][yolox][mobilenetv2]等环境部署&训练自己数据集&评估训练结果教程
[faster-rcnn][ssd][yolox][mobilenetv2]等环境部署&训练自己数据集&评估训练结果教程
2022-11-06 14:27:20 603
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人