家禽自动识别监控系统源码分享

家禽自动识别监控检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着全球对食品安全和动物福利的关注日益增强,家禽养殖业面临着诸多挑战,包括疾病监测、饲养管理和生产效率的提升等。传统的家禽监测方法往往依赖人工观察,不仅效率低下,而且容易受到人为因素的影响,导致数据的准确性和可靠性降低。因此,开发一种高效、自动化的家禽识别监控系统显得尤为重要。近年来,计算机视觉技术的迅猛发展为这一问题提供了新的解决方案,其中基于深度学习的目标检测算法,如YOLO(You Only Look Once),因其高效性和实时性,成为研究的热点。

YOLOv8作为YOLO系列中的最新版本,具备了更强的特征提取能力和更快的推理速度,适合在复杂环境中进行实时目标检测。然而,现有的YOLOv8模型在特定领域的应用上仍存在一定的局限性,尤其是在家禽自动识别方面。家禽种类繁多,各种类之间在外观上可能存在较大差异,因此需要对YOLOv8进行改进,以提高其在家禽识别任务中的准确性和鲁棒性。

本研究将基于改进的YOLOv8模型,构建一个家禽自动识别监控系统。该系统将利用来自“adahii”数据集的信息,该数据集包含599张图像,涵盖了五个不同的家禽类别:European、barbari、hari、naimi和swakini。这些数据不仅为模型的训练提供了丰富的样本,还为不同家禽种类的特征提取和分类提供了基础。通过对数据集的深入分析与处理,我们将能够提升模型对不同家禽种类的识别能力,进而实现更为精准的监控。

研究的意义在于,首先,改进YOLOv8模型将为家禽养殖业提供一种高效、智能的监控工具,帮助养殖户实时掌握家禽的生长状态和健康状况,从而提高养殖管理的科学性和效率。其次,自动识别系统的应用将大幅降低人工监测的工作量,减少人力成本,提升生产效率。此外,该系统的推广应用还将有助于推动家禽养殖行业的数字化转型,促进智能农业的发展。

最后,本研究不仅具有重要的理论价值,还具有广泛的应用前景。通过对家禽自动识别监控系统的研究,我们希望能够为相关领域的学术研究提供新的思路和方法,同时为实际应用提供切实可行的解决方案。未来,随着技术的不断进步和数据集的不断丰富,我们相信这一系统将能够在更大范围内推广应用,为全球家禽养殖业的可持续发展贡献力量。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 4
names: [‘barbari’, ‘hari’, ‘naimi’, ‘swakini’]

4.2 本项目数据集信息介绍

数据集信息展示

在本研究中,我们采用了名为“adahii”的数据集,以支持改进YOLOv8的家禽自动识别监控系统的训练和测试。该数据集专注于四种特定的家禽品种,分别是巴巴里(barbari)、哈里(hari)、奈米(naimi)和斯瓦基尼(swakini)。这些品种在农业生产中具有重要的经济价值和生态意义,因此对其进行准确的自动识别和监控,将为家禽养殖业的管理和优化提供强有力的技术支持。

“adahii”数据集的设计考虑到了家禽的多样性和复杂性。每个类别的样本均经过精心挑选和标注,以确保模型能够学习到每种家禽的独特特征。例如,巴巴里作为一种优质肉用禽,其特征包括独特的羽毛颜色和体型;而哈里则以其良好的产蛋能力而闻名,具有明显的生理特征。奈米和斯瓦基尼同样各具特色,前者以其适应性强和生长速度快而受到养殖者的青睐,后者则因其优雅的外形和良好的肉质而受到市场的欢迎。

在数据集的构建过程中,研究团队确保了样本的多样性和代表性,涵盖了不同的生长阶段、性别和环境条件。这种多样性不仅有助于提高模型的泛化能力,还能增强其在实际应用中的适应性。数据集中包含的图像经过精细的标注,确保每个样本都能为模型提供清晰的学习信号。这些标注信息包括家禽的种类、位置、姿态等,旨在帮助YOLOv8模型更好地理解和识别不同家禽的特征。

此外,为了提升模型的训练效果,数据集还包含了多种拍摄角度和光照条件下的图像。这种多样化的图像数据能够有效模拟现实环境中的变化,帮助模型在不同场景下进行准确识别。研究团队还进行了数据增强处理,以增加数据集的规模和多样性,从而进一步提升模型的鲁棒性。

在训练过程中,研究人员将“adahii”数据集与YOLOv8模型相结合,利用其先进的特征提取和目标检测能力,旨在实现高效、准确的家禽识别。通过不断迭代和优化模型参数,研究团队期望能够显著提高识别的准确率和实时性,使得家禽监控系统能够在实际应用中发挥更大的作用。

综上所述,“adahii”数据集为改进YOLOv8的家禽自动识别监控系统提供了坚实的基础。通过对四种家禽品种的深入研究和数据集的精心构建,我们相信该系统将能够在家禽养殖管理中发挥重要作用,为提高养殖效率和经济效益提供强有力的技术支持。未来的研究将继续探索如何进一步优化数据集和模型,以适应更广泛的应用场景和需求。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8是由Ultralytics公司于2023年1月10日发布的目标检测算法,它在YOLOv7的基础上进行了显著的优化和改进,成为YOLO系列中的又一重要版本。YOLOv8的设计理念依然是以高效的实时目标检测为核心,采用了更深的卷积神经网络结构,旨在提高目标检测的精度和速度。与传统的目标检测方法不同,YOLOv8将整个图像作为输入,直接在图像上进行目标检测和定位,而不需要使用滑动窗口或区域提议,这种端到端的处理方式大大提升了检测的效率。

在YOLOv8中,网络结构的设计分为三个主要部分:输入端、主干网络和检测端。输入端负责接收图像数据,主干网络则是特征提取的核心部分,负责从输入图像中提取有用的特征信息,而检测端则负责将提取到的特征进行分类和定位。YOLOv8引入了多尺度训练和测试的技术,利用特征金字塔网络(FPN)和路径聚合网络(PAN)来增强模型对不同尺度目标的检测能力。通过这种结构,YOLOv8能够有效地融合来自不同层次的特征信息,从而提升目标检测的准确性。

在YOLOv8的创新中,C2F模块的引入尤为重要。C2F模块取代了YOLOv5中的C3模块,并结合了YOLOv7中的ELAN模块的思想,增加了更多的残差连接。这种设计不仅保持了模型的轻量化特性,还丰富了梯度信息的传递,使得模型在训练过程中能够更好地学习到复杂的特征。此外,YOLOv8的检测头部分采用了解耦合头结构,将分类和检测任务分离,进一步提高了模型的灵活性和准确性。与传统的锚框(Anchor-Based)方法不同,YOLOv8采用了无锚框(Anchor-Free)的方法,使得目标检测更加简洁高效。

在数据增强方面,YOLOv8也进行了创新,特别是在训练的最后10个epoch中关闭了马赛克增强,并引入了动态任务对齐分配策略(Task-Aligned Assigner),这使得模型在训练过程中能够更好地适应不同的任务需求。在损失计算方面,YOLOv8使用了BCELoss作为分类损失,DFLLoss和CIoULoss作为回归损失,这种组合使得模型在训练时能够更好地平衡分类和定位的精度。

YOLOv8的轻量化版本YOLOv8n则是为了满足在资源受限的环境中进行高效目标检测的需求。YOLOv8n通过在骨干特征提取网络层使用更轻量化的C2F模块,减少了计算复杂度,同时在特征融合层减少了降采样层,进一步提升了模型的速度和效率。特征融合网络中加入的BiFPN网络,通过高效的双向跨尺度连接和加权特征融合,显著提高了模型对不同尺度特征信息的提取速度,使得YOLOv8n在实时应用中表现更加出色。

总的来说,YOLOv8在精度和速度上均有显著提升,与之前的YOLO系列算法相比,YOLOv8的mAP(平均精度均值)提高了43.23%,帧率提升了10.28倍。这使得YOLOv8成为一个极具竞争力的目标检测算法,广泛应用于智能监控、自动驾驶、人脸识别等多个领域。通过这些创新和优化,YOLOv8不仅在学术界引起了广泛关注,也在工业界得到了积极应用,为目标检测技术的发展注入了新的活力。

在未来的研究中,YOLOv8的进一步优化和改进将继续关注如何在保证检测精度的同时,进一步提升模型的速度和适应性。随着深度学习技术的不断进步,YOLOv8的潜力将会被进一步挖掘,推动目标检测领域的发展,满足日益增长的应用需求。通过对YOLOv8算法原理的深入理解,我们可以更好地应用这一强大的工具,解决实际问题,推动智能化技术的进步。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 train.py

以下是经过简化和注释的核心代码部分,保留了YOLO检测模型训练的关键功能和逻辑:

# 导入必要的库
import math
import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first

class DetectionTrainer(BaseTrainer):
    """
    扩展自BaseTrainer类,用于基于检测模型的训练。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建YOLO数据集。

        参数:
            img_path (str): 包含图像的文件夹路径。
            mode (str): 模式,可以是'train'或'val',用于不同的数据增强。
            batch (int, optional): 批次大小,仅用于'rect'模式。默认为None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构造并返回数据加载器。"""
        assert mode in ["train", "val"]
        with torch_distributed_zero_first(rank):  # DDP模式下仅初始化一次数据集
            dataset = self.build_dataset(dataset_path, mode, batch_size)
        shuffle = mode == "train"  # 训练模式下打乱数据
        workers = self.args.workers if mode == "train" else self.args.workers * 2
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对图像批次进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 归一化图像
        if self.args.multi_scale:  # 如果启用多尺度
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择图像大小
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 调整图像大小
            batch["img"] = imgs
        return batch

    def set_model_attributes(self):
        """设置模型的属性,包括类别数量和名称。"""
        self.model.nc = self.data["nc"]  # 将类别数量附加到模型
        self.model.names = self.data["names"]  # 将类别名称附加到模型
        self.model.args = self.args  # 将超参数附加到模型

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回YOLO检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
        if weights:
            model.load(weights)  # 加载预训练权重
        return model

    def plot_training_samples(self, batch, ni):
        """绘制训练样本及其注释。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

    def plot_metrics(self):
        """从CSV文件绘制指标。"""
        plot_results(file=self.csv, on_plot=self.on_plot)  # 保存结果图

代码注释说明:

  1. 导入库:引入必要的库和模块,主要用于数据处理、模型构建和训练。
  2. DetectionTrainer类:继承自BaseTrainer,用于YOLO模型的训练。
  3. build_dataset方法:构建YOLO数据集,支持训练和验证模式,处理图像路径和数据增强。
  4. get_dataloader方法:创建数据加载器,支持分布式训练。
  5. preprocess_batch方法:对输入的图像批次进行预处理,包括归一化和可选的多尺度调整。
  6. set_model_attributes方法:设置模型的类别数量和名称等属性。
  7. get_model方法:返回YOLO检测模型,支持加载预训练权重。
  8. plot_training_samples方法:绘制训练样本及其对应的标注信息。
  9. plot_metrics方法:绘制训练过程中的指标,便于监控模型性能。

这些核心部分构成了YOLO模型训练的基础,确保了数据的正确处理和模型的有效训练。

该文件 train.py 是一个用于训练 YOLO(You Only Look Once)目标检测模型的 Python 脚本,继承自 BaseTrainer 类。它主要负责构建数据集、创建数据加载器、预处理图像、设置模型属性、获取模型、进行验证、记录损失、显示训练进度以及绘制训练样本和指标等功能。

首先,DetectionTrainer 类定义了用于训练的模型。它包含一个示例,展示了如何使用该类进行训练。用户可以通过传入模型路径、数据配置文件和训练周期等参数来创建 DetectionTrainer 的实例,并调用 train() 方法开始训练。

build_dataset 方法中,程序构建了 YOLO 数据集。该方法接受图像路径、模式(训练或验证)和批量大小作为参数。它会根据模型的步幅(stride)来确定图像的大小,并调用 build_yolo_dataset 函数来构建数据集。

get_dataloader 方法用于构建并返回数据加载器。它根据传入的模式(训练或验证)来决定是否打乱数据,并根据需要设置工作线程的数量。该方法还利用 torch_distributed_zero_first 确保在分布式训练时只初始化一次数据集。

preprocess_batch 方法中,程序对图像批次进行预处理,包括将图像转换为浮点数并进行归一化。如果启用了多尺度训练,程序会随机选择一个图像大小,并对图像进行插值调整。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称等。这些属性会在模型训练过程中使用。

get_model 方法返回一个 YOLO 检测模型,并可选择加载预训练权重。

get_validator 方法返回一个用于验证模型的 DetectionValidator 实例,便于在训练后对模型进行评估。

label_loss_items 方法用于返回带有标签的训练损失项字典,方便在训练过程中记录和监控损失。

progress_string 方法返回一个格式化的字符串,显示训练进度,包括当前的 epoch、GPU 内存使用情况、损失值、实例数量和图像大小等信息。

plot_training_samples 方法用于绘制训练样本及其注释,帮助可视化训练过程中的数据。

最后,plot_metricsplot_training_labels 方法分别用于绘制训练过程中的指标和标签图,便于分析模型的训练效果。

整体而言,该文件提供了一个结构化的框架,用于训练 YOLO 模型,涵盖了从数据准备到模型训练和评估的各个方面。

11.2 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\ops.py

以下是经过简化并注释的核心代码部分,主要集中在目标检测相关的功能实现上:

import torch
import torchvision

def non_max_suppression(
        prediction,
        conf_thres=0.25,
        iou_thres=0.45,
        classes=None,
        agnostic=False,
        multi_label=False,
        labels=(),
        max_det=300,
):
    """
    执行非最大抑制(NMS)以过滤重叠的边界框。

    Args:
        prediction (torch.Tensor): 预测结果,形状为 (batch_size, num_classes + 4 + num_masks, num_boxes)
        conf_thres (float): 置信度阈值,低于该值的框将被过滤。
        iou_thres (float): IoU阈值,低于该值的框在NMS期间将被过滤。
        classes (List[int]): 要考虑的类别索引列表。如果为None,则考虑所有类别。
        agnostic (bool): 如果为True,则模型对类别数量不敏感,所有类别将被视为一个。
        multi_label (bool): 如果为True,则每个框可能有多个标签。
        labels (List[List[Union[int, float, torch.Tensor]]]): 每个图像的先验标签列表。
        max_det (int): NMS后要保留的最大框数。

    Returns:
        (List[torch.Tensor]): 每个元素是一个张量,形状为 (num_boxes, 6 + num_masks),包含保留的框。
    """
    # 检查置信度和IoU阈值的有效性
    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}'
    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}'

    device = prediction.device  # 获取设备信息
    bs = prediction.shape[0]  # 批量大小
    nc = prediction.shape[1] - 4  # 类别数量
    nm = prediction.shape[1] - nc - 4  # 掩码数量
    xc = prediction[:, 4:nc + 4].amax(1) > conf_thres  # 置信度筛选

    output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs  # 初始化输出

    for xi, x in enumerate(prediction):  # 遍历每个图像的预测结果
        x = x[xc[xi]]  # 根据置信度筛选框

        if not x.shape[0]:  # 如果没有框,跳过
            continue

        # 将框和类别分开
        box, cls, mask = x.split((4, nc, nm), 1)

        if multi_label:  # 处理多标签情况
            i, j = torch.where(cls > conf_thres)
            x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
        else:  # 只保留最佳类别
            conf, j = cls.max(1, keepdim=True)
            x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]

        # 根据类别筛选
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        n = x.shape[0]  # 当前图像的框数量
        if not n:  # 如果没有框,跳过
            continue
        if n > max_det:  # 如果框数量超过最大限制,按置信度排序并截断
            x = x[x[:, 4].argsort(descending=True)[:max_det]]

        # 执行NMS
        boxes, scores = x[:, :4], x[:, 4]  # 提取框和置信度
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # 进行NMS
        output[xi] = x[i]  # 保存结果

    return output  # 返回每个图像的保留框

代码注释说明:

  1. 非最大抑制(NMS):该函数的主要目的是在目标检测中过滤掉重叠的边界框,保留置信度高的框。
  2. 参数说明:函数接收多个参数,包括预测结果、置信度阈值、IoU阈值、类别等,以便灵活控制NMS的行为。
  3. 框筛选:通过置信度阈值对预测框进行初步筛选,确保后续处理的框都是有意义的。
  4. 类别处理:支持多标签和单标签的情况,根据需要进行不同的处理。
  5. NMS执行:使用torchvision.ops.nms进行实际的非最大抑制操作,返回每个图像的最终检测框。

以上是代码的核心部分及其详细注释,涵盖了目标检测中的关键步骤。

这个程序文件是一个与YOLOv8算法相关的工具库,主要包含了一些用于处理图像、边界框和掩膜的函数,以及一个用于性能分析的上下文管理器。文件中包含的功能主要分为以下几个部分:

首先,文件定义了一个Profile类,用于测量代码块的执行时间。这个类可以作为装饰器使用,也可以作为上下文管理器使用,方便开发者在调试时评估代码的性能。

接下来,文件中有多个函数用于处理边界框和图像坐标。比如,segment2box函数将分割标签转换为边界框标签,scale_boxes函数则用于根据图像的不同尺寸调整边界框的大小。make_divisible函数确保返回的数字是给定除数的倍数,这在处理神经网络的输入时非常有用。

文件中还实现了非极大值抑制(NMS)算法的non_max_suppression函数,用于在检测到多个重叠的边界框时,保留最有可能的框。这个函数支持多标签检测,并且可以根据给定的置信度和IoU阈值进行过滤。

此外,文件中还包含了一些用于坐标转换的函数,如xyxy2xywhxywh2xyxy,它们用于在不同的边界框表示法之间进行转换。还有一些函数用于处理掩膜的上采样和裁剪,比如process_maskcrop_mask,这些函数可以将掩膜应用到边界框上,并在需要时进行上采样。

最后,文件中还包含了一些实用的工具函数,如clean_str用于清理字符串,convert_torch2numpy_batch用于将PyTorch张量转换为NumPy数组。这些工具函数在数据处理和模型训练中非常有用。

总的来说,这个文件提供了一系列实用的工具和函数,帮助开发者在使用YOLOv8进行目标检测和图像处理时,提高效率和准确性。

11.3 ui.py

以下是代码中最核心的部分,并附上详细的中文注释:

import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径

    Returns:
        None
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令,并等待其完成
    result = subprocess.run(command, shell=True)
    
    # 检查命令执行的返回码,如果不为0则表示出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 实例化并运行应用
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = "web.py"  # 这里可以替换为实际的脚本路径

    # 调用函数运行脚本
    run_script(script_path)

代码说明:

  1. 导入模块

    • sys:用于访问与 Python 解释器紧密相关的变量和函数。
    • subprocess:用于执行外部命令。
  2. run_script 函数

    • 该函数接受一个脚本路径作为参数,并使用当前 Python 环境来运行该脚本。
    • sys.executable 获取当前 Python 解释器的路径,以确保使用正确的 Python 版本。
    • 构建命令字符串,使用 streamlit 模块运行指定的脚本。
    • 使用 subprocess.run 执行命令,并通过 shell=True 允许在 shell 中执行命令。
    • 检查命令的返回码,如果返回码不为0,表示脚本运行出错,打印错误信息。
  3. 主程序部分

    • 当脚本作为主程序运行时,指定要运行的脚本路径(此处为 "web.py")。
    • 调用 run_script 函数来执行指定的脚本。

这个程序文件的主要功能是通过当前的 Python 环境来运行一个指定的脚本,具体来说是运行一个名为 web.py 的脚本。程序首先导入了必要的模块,包括 sysossubprocess,这些模块提供了与系统交互的功能。

run_script 函数中,首先获取当前 Python 解释器的路径,这样可以确保使用正确的 Python 环境来执行脚本。接着,构建一个命令字符串,这个命令使用 streamlit 模块来运行指定的脚本。streamlit 是一个用于构建数据应用的库,命令格式为 python -m streamlit run script_path

然后,使用 subprocess.run 方法来执行这个命令。这个方法会在一个新的进程中运行命令,并等待其完成。如果脚本运行出现错误,返回的状态码不为零,程序会打印出“脚本运行出错”的提示信息。

在文件的最后部分,使用 if __name__ == "__main__": 语句来确保只有在直接运行该文件时才会执行下面的代码。这部分代码指定了要运行的脚本路径(通过 abs_path 函数获取 web.py 的绝对路径),然后调用 run_script 函数来执行这个脚本。

总体来说,这个程序的目的是为了方便地通过当前的 Python 环境来运行一个 Streamlit 应用脚本,并处理可能出现的错误。

11.4 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\rtdetr\train.py

以下是代码中最核心的部分,并附上详细的中文注释:

class RTDETRTrainer(DetectionTrainer):
    """
    RT-DETR模型的训练类,扩展自YOLO的DetectionTrainer类。
    该模型由百度开发,旨在实现实时目标检测,利用视觉变换器(Vision Transformers)并具备IoU感知查询选择和可调推理速度等能力。
    """

    def get_model(self, cfg=None, weights=None, verbose=True):
        """
        初始化并返回一个用于目标检测任务的RT-DETR模型。

        参数:
            cfg (dict, optional): 模型配置,默认为None。
            weights (str, optional): 预训练模型权重的路径,默认为None。
            verbose (bool): 如果为True,则启用详细日志,默认为True。

        返回:
            (RTDETRDetectionModel): 初始化后的模型。
        """
        # 创建RT-DETR检测模型实例
        model = RTDETRDetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1)
        # 如果提供了权重路径,则加载预训练权重
        if weights:
            model.load(weights)
        return model

    def build_dataset(self, img_path, mode='val', batch=None):
        """
        构建并返回用于训练或验证的RT-DETR数据集。

        参数:
            img_path (str): 包含图像的文件夹路径。
            mode (str): 数据集模式,可以是'train'或'val'。
            batch (int, optional): 矩形训练的批量大小,默认为None。

        返回:
            (RTDETRDataset): 针对特定模式的数据集对象。
        """
        # 创建RT-DETR数据集实例
        return RTDETRDataset(img_path=img_path,
                             imgsz=self.args.imgsz,
                             batch_size=batch,
                             augment=mode == 'train',  # 训练模式下进行数据增强
                             hyp=self.args,
                             rect=False,
                             cache=self.args.cache or None,
                             prefix=colorstr(f'{mode}: '),  # 添加模式前缀
                             data=self.data)

    def get_validator(self):
        """
        返回适用于RT-DETR模型验证的检测验证器。

        返回:
            (RTDETRValidator): 用于模型验证的验证器对象。
        """
        self.loss_names = 'giou_loss', 'cls_loss', 'l1_loss'  # 定义损失名称
        return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))

    def preprocess_batch(self, batch):
        """
        预处理一批图像。将图像缩放并转换为浮点格式。

        参数:
            batch (dict): 包含一批图像、边界框和标签的字典。

        返回:
            (dict): 预处理后的批次数据。
        """
        # 调用父类的预处理方法
        batch = super().preprocess_batch(batch)
        bs = len(batch['img'])  # 批次大小
        batch_idx = batch['batch_idx']  # 批次索引
        gt_bbox, gt_class = [], []  # 初始化真实边界框和类别列表
        for i in range(bs):
            # 根据批次索引提取每个图像的真实边界框和类别
            gt_bbox.append(batch['bboxes'][batch_idx == i].to(batch_idx.device))
            gt_class.append(batch['cls'][batch_idx == i].to(device=batch_idx.device, dtype=torch.long))
        return batch  # 返回预处理后的批次数据

代码说明:

  1. RTDETRTrainer类:该类用于训练RT-DETR模型,继承自YOLO的DetectionTrainer类,专门针对RT-DETR的特性进行调整。
  2. get_model方法:负责初始化RT-DETR模型,并加载预训练权重(如果提供)。
  3. build_dataset方法:根据指定的模式(训练或验证)构建数据集,支持数据增强。
  4. get_validator方法:返回一个适用于RT-DETR的验证器,用于模型验证。
  5. preprocess_batch方法:对输入的图像批次进行预处理,包括缩放和类型转换,以便后续处理。

这个程序文件是一个用于训练RT-DETR模型的Python脚本,属于Ultralytics YOLO系列,采用AGPL-3.0许可证。RT-DETR是一种实时目标检测模型,由百度开发,结合了视觉变换器(Vision Transformers)技术,具有IoU感知查询选择和可调推理速度等特性。

文件中首先导入了一些必要的库和模块,包括PyTorch、YOLO的检测训练器、RT-DETR模型、以及数据集和验证器的相关类。接着定义了一个名为RTDETRTrainer的类,它继承自DetectionTrainer类,以适应RT-DETR模型的特定特征和架构。

在类的文档字符串中,提供了一些重要的说明,包括RT-DETR模型在训练时的一些注意事项,例如使用F.grid_sample时不支持deterministic=True参数,以及AMP训练可能导致NaN输出和在二分图匹配过程中可能出现的错误。此外,还给出了一个使用示例,展示了如何初始化和训练RT-DETR模型。

RTDETRTrainer类中包含多个方法。get_model方法用于初始化并返回一个RT-DETR模型,接受模型配置、预训练权重路径和详细日志参数。若提供了权重路径,则会加载相应的权重。

build_dataset方法用于构建并返回一个RT-DETR数据集,接受图像路径、模式(训练或验证)和批量大小作为参数。根据模式的不同,数据集会进行相应的增强处理。

get_validator方法返回一个适用于RT-DETR模型验证的验证器对象,并设置损失名称,包括GIoU损失、分类损失和L1损失。

preprocess_batch方法用于预处理一批图像,主要是对图像进行缩放并转换为浮点格式。它从父类中调用了preprocess_batch方法,并进一步处理每个图像的边界框和类别信息,以确保它们在正确的设备上并具有正确的数据类型。

整体来看,这个文件为RT-DETR模型的训练提供了一个完整的框架,涵盖了模型的初始化、数据集的构建、验证器的获取以及批量数据的预处理等功能。

11.5 code\ultralytics\hub\auth.py

以下是代码中最核心的部分,并附上详细的中文注释:

import requests  # 导入请求库,用于发送HTTP请求

# 定义API的根地址
HUB_API_ROOT = "https://api.example.com"  # 示例API根地址
HUB_WEB_ROOT = "https://web.example.com"  # 示例Web根地址
API_KEY_URL = f"{HUB_WEB_ROOT}/settings?tab=api+keys"  # API密钥设置页面的URL

class Auth:
    """
    处理身份验证过程,包括API密钥处理、基于cookie的身份验证和头部生成。

    支持不同的身份验证方法:
    1. 直接使用API密钥。
    2. 使用浏览器cookie进行身份验证(特别是在Google Colab中)。
    3. 提示用户输入API密钥。
    """

    id_token = api_key = model_key = False  # 初始化身份验证相关的属性

    def __init__(self, api_key="", verbose=False):
        """
        初始化Auth类,接受一个可选的API密钥。

        参数:
            api_key (str, optional): 可能是API密钥或组合的API密钥和模型ID
        """
        api_key = api_key.split("_")[0]  # 如果API密钥包含模型ID,分割并保留API密钥部分
        self.api_key = api_key or SETTINGS.get("api_key", "")  # 设置API密钥

        if self.api_key:  # 如果提供了API密钥
            if self.api_key == SETTINGS.get("api_key"):  # 检查是否与设置中的API密钥匹配
                if verbose:
                    LOGGER.info("Authenticated ✅")  # 记录已认证信息
                return
            else:
                success = self.authenticate()  # 尝试使用提供的API密钥进行认证
        elif is_colab():  # 如果没有提供API密钥且在Google Colab环境中
            success = self.auth_with_cookies()  # 尝试使用cookie进行认证
        else:
            success = self.request_api_key()  # 请求用户输入API密钥

        if success:  # 如果认证成功
            SETTINGS.update({"api_key": self.api_key})  # 更新设置中的API密钥
            if verbose:
                LOGGER.info("New authentication successful ✅")  # 记录新认证成功信息
        elif verbose:
            LOGGER.info(f"Retrieve API key from {API_KEY_URL}")  # 提示用户获取API密钥的URL

    def authenticate(self) -> bool:
        """
        尝试使用id_token或API密钥进行服务器认证。

        返回:
            bool: 如果认证成功返回True,否则返回False。
        """
        try:
            header = self.get_auth_header()  # 获取认证头部
            if header:
                r = requests.post(f"{HUB_API_ROOT}/v1/auth", headers=header)  # 发送认证请求
                if not r.json().get("success", False):  # 检查请求是否成功
                    raise ConnectionError("Unable to authenticate.")  # 抛出连接错误
                return True  # 认证成功
            raise ConnectionError("User has not authenticated locally.")  # 本地未认证
        except ConnectionError:
            self.id_token = self.api_key = False  # 重置无效的认证信息
            LOGGER.warning("Invalid API key ⚠️")  # 记录无效API密钥警告
            return False  # 认证失败

    def get_auth_header(self):
        """
        获取用于API请求的认证头部。

        返回:
            (dict): 如果设置了id_token或API密钥,则返回认证头部,否则返回None。
        """
        if self.id_token:
            return {"authorization": f"Bearer {self.id_token}"}  # 使用id_token生成认证头部
        elif self.api_key:
            return {"x-api-key": self.api_key}  # 使用API密钥生成认证头部
        return None  # 如果都没有,则返回None

代码说明:

  1. Auth类:负责处理身份验证的主要逻辑,包括API密钥和cookie的管理。
  2. __init__方法:初始化Auth对象,处理API密钥的输入和认证。
  3. authenticate方法:尝试通过API密钥或id_token进行认证,并返回认证结果。
  4. get_auth_header方法:根据当前的认证状态生成适当的HTTP头部,以便在后续的API请求中使用。

这个程序文件主要用于管理Ultralytics YOLO的身份验证过程,包括API密钥的处理、基于cookie的身份验证以及请求头的生成。它定义了一个名为Auth的类,支持多种身份验证方式:直接使用API密钥、使用浏览器cookie进行身份验证(特别是在Google Colab环境中),以及提示用户输入API密钥。

在类的属性中,id_tokenapi_keymodel_key都初始化为False,用于存储身份验证所需的令牌和密钥。构造函数__init__接受一个可选的API密钥参数,并根据输入的API密钥进行初始化。如果提供的API密钥与设置中的密钥匹配,系统会记录用户已登录的信息;如果不匹配,则尝试进行身份验证。如果没有提供API密钥且当前环境是Google Colab,系统会尝试通过cookie进行身份验证;否则,会请求用户输入API密钥。

request_api_key方法用于提示用户输入API密钥,最多允许三次尝试。如果成功验证,返回True;否则抛出连接错误。authenticate方法尝试使用id_token或API密钥与服务器进行身份验证,返回一个布尔值表示是否成功。如果身份验证失败,会重置无效的密钥并记录警告信息。

auth_with_cookies方法专门用于在Google Colab环境中通过cookie进行身份验证。如果成功获取到身份验证信息,则调用authenticate方法进行进一步验证。最后,get_auth_header方法用于生成API请求所需的身份验证头,如果id_tokenapi_key已设置,则返回相应的头信息,否则返回None

总体而言,这个文件的功能是确保用户能够通过多种方式进行身份验证,以便安全地访问Ultralytics的API服务。

11.6 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\yolo\segment_init_.py
# 导入必要的模块和类
from .predict import SegmentationPredictor  # 导入分割预测器类
from .train import SegmentationTrainer      # 导入分割训练器类
from .val import SegmentationValidator      # 导入分割验证器类

# 定义模块的公开接口,指定可以被外部访问的类
__all__ = 'SegmentationPredictor', 'SegmentationTrainer', 'SegmentationValidator'

代码注释说明:

  1. 导入模块

    • from .predict import SegmentationPredictor:从当前包的 predict 模块中导入 SegmentationPredictor 类,该类用于进行图像分割的预测。
    • from .train import SegmentationTrainer:从当前包的 train 模块中导入 SegmentationTrainer 类,该类用于训练分割模型。
    • from .val import SegmentationValidator:从当前包的 val 模块中导入 SegmentationValidator 类,该类用于验证分割模型的性能。
  2. 定义公开接口

    • __all__ 是一个特殊变量,用于定义当使用 from module import * 时,哪些类或函数是可以被导入的。在这里,公开了三个类:SegmentationPredictorSegmentationTrainerSegmentationValidator,使得外部用户可以直接使用这些类。

这个程序文件是Ultralytics YOLO(You Only Look Once)系列中的一个模块,主要用于图像分割任务。文件名暗示了它是关于YOLOv8算法的改进和调试加载训练的相关内容。

在代码中,首先有一个注释,指出这是Ultralytics YOLO的代码,并声明了其使用的AGPL-3.0许可证。这意味着该代码是开源的,用户可以自由使用和修改,但需要遵循相应的许可证条款。

接下来,代码通过相对导入的方式引入了三个类:SegmentationPredictorSegmentationTrainerSegmentationValidator。这些类分别负责图像分割的预测、训练和验证功能。具体来说:

  • SegmentationPredictor:这个类可能用于加载训练好的模型,并对新的图像进行分割预测。
  • SegmentationTrainer:这个类负责训练图像分割模型,可能包括数据加载、模型训练、损失计算等功能。
  • SegmentationValidator:这个类用于验证训练好的模型的性能,通常会在验证集上评估模型的准确性和其他指标。

最后,__all__变量定义了模块的公共接口,表示当使用from module import *时,只有SegmentationPredictorSegmentationTrainerSegmentationValidator这三个类会被导入。这是一种封装机制,确保用户只接触到模块的核心功能,而不暴露内部实现细节。

总体而言,这个文件是YOLOv8图像分割模块的初始化文件,负责组织和导出与图像分割相关的主要功能。

12.系统整体结构(节选)

整体功能和构架概括

该项目是一个基于YOLOv8算法的目标检测和图像分割框架,包含了多个模块和工具,旨在提供一个完整的解决方案用于训练、验证和推理。整体架构包括模型训练、数据处理、身份验证、图像分割、目标跟踪等功能。每个模块都负责特定的任务,形成一个协同工作的系统。

  • 训练模块:负责模型的训练过程,包括数据集的构建、损失计算和模型参数更新。
  • 验证模块:用于评估训练好的模型性能,提供指标以监控训练效果。
  • 推理模块:用于加载训练好的模型并对新数据进行预测。
  • 工具模块:提供辅助功能,如身份验证、图像处理、性能分析等。
  • 分割模块:专门处理图像分割任务,提供相关的预测和训练功能。
  • 跟踪模块:用于目标跟踪,能够在视频流中保持对目标的识别。

文件功能整理表

文件路径功能描述
C:\shangjia\code\train.py训练YOLO模型,构建数据集、加载器,处理图像,设置模型属性等。
C:\shangjia\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\ops.py提供图像和边界框处理工具,包含性能分析和非极大值抑制等功能。
C:\shangjia\code\ui.py通过当前Python环境运行指定的Streamlit应用脚本。
C:\shangjia\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\rtdetr\train.py训练RT-DETR模型,构建数据集,处理模型初始化和验证。
C:\shangjia\code\code\ultralytics\hub\auth.py管理身份验证过程,包括API密钥和cookie的处理。
C:\shangjia\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\yolo\segment\__init__.py初始化YOLO分割模块,导出分割预测、训练和验证功能。
C:\shangjia\code\ultralytics\models\fastsam\prompt.py处理FastSAM模型的提示功能,可能涉及图像分割和交互。
C:\shangjia\code\ultralytics\models\yolo\classify\__init__.py初始化YOLO分类模块,导出分类相关的功能。
C:\shangjia\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\trackers\basetrack.py实现基本的目标跟踪功能,支持多种跟踪算法。
C:\shangjia\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\SwinTransformer.py实现Swin Transformer模型,作为YOLO的特征提取器。
C:\shangjia\code\ultralytics\utils\autobatch.py提供自动批处理功能,优化数据加载和训练过程。
C:\shangjia\code\ultralytics\models\nas\model.py实现神经架构搜索(NAS)相关的模型构建和训练功能。
C:\shangjia\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\solutions\object_counter.py提供对象计数解决方案,结合YOLO进行实时计数。

这个表格总结了项目中各个文件的主要功能,帮助理解整个系统的架构和功能模块。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/adahii762

参考原始博客2: https://github.com/VisionMillionDataStudio/adahii762

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值