01背包和完全背包

0/1背包问题是一个典型的动态规划问题。给定一个固定容量的背包和一些物品,每个物品都有自己的重量和价值。问题是要找出一种最优的方式来装物品,使得背包中装入的物品总价值最大。但是有一个限制,那就是每个物品只能选择一次,也就是说不能将一个物品分割成多个小物品来装入背包。

用动态规划解决0/1背包问题的基本思路是,创建一个二维表格,其中一维代表每个物品,另一维代表背包的当前容量。

int knapsack(int W, vector<int>& wt, vector<int>& val, int n) {
    vector<vector<int>> K(n+1, vector<int>(W+1));
 
    for (int i = 0; i <= n; i++) {
        for (int w = 0; w <= W; w++) {
            if (i == 0 || w == 0)
                K[i][w] = 0;
            else if (wt[i-1] <= w)
                K[i][w] = max(val[i-1] + K[i-1][w-wt[i-1]],  K[i-1][w]);
            else
                K[i][w] = K[i-1][w];
        }
    }
    return K[n][W];
}

通过填写每个物品在每个容量下的最大价值,最后可以找到最优解。

与0/1背包问题不同的是,完全背包问题中每个物品可以被分割成任意数量的小物品来装入背包。也就是说,你可以选择任意数量的每个物品,只要它们的总重量不超过背包的容量。

解决完全背包问题的动态规划方法与0/1背包问题有些不同。基本的想法是创建一个二维表格,其中一维代表每个物品,另一维代表背包的当前容量。但是,对于每个物品和每个容量,我们不是简单地选择或不选择这个物品,而是选择一个数量。因此,我们需要计算每个物品在每个容量下的最大价值,这需要一个额外的维度来存储。

int knapsackComplete(int W, vector<int>& wt, vector<int>& val, int n) {
    vector<vector<vector<int>>> K(n+1, vector<vector<int>>(W+1, vector<int>(n+1)));
 
    for (int i = 0; i <= n; i++) {
        for (int w = 0; w <= W; w++) {
            for (int v = 0; v < n; v++) {
                if (wt[v] <= w) {
                    K[i][w][v] = max(K[i][w][v], K[i-1][w-wt[v]][v] + val[v]);
                } else {
                    K[i][w][v] = max(K[i][w][v], K[i-1][w][v]);
                }
            }
        }
    }
    return K[n][W][n];
}

在这两个例子中,W 是背包的容量,wt 是物品的重量列表,val 是物品的价值列表,n 是物品的数量。函数返回的是能够装入背包的最大价值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值